
http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

TCP Tuning Techniques for
High-Speed Wide-Area Networks

Brian L. Tierney

Distributed Systems Department
Lawrence Berkeley National Laboratory

Slide: 2Brian L. Tierney

Wizard Gap

Slide from
Matt Mathis, PSC

Slide: 3Brian L. Tierney

Today’s Talk

This talk will cover:
Information needed to be a “wizard”
Current work being done so you don’t have to be a
wizard

Outline
TCP Overview
TCP Tuning Techniques (focus on Linux)
TCP Issues
Network Monitoring Tools
Current TCP Research

Slide: 4Brian L. Tierney

How TCP works: A very short overview

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

Congestion window (CWND) = the number of packets the
sender is allowed to send

The larger the window size, the higher the throughput
Throughput = Window size / Round-trip Time

TCP Slow start
exponentially increase the congestion window size until a packet is
lost

this gets a rough estimate of the optimal congestion window
size

Slide: 5Brian L. Tierney

TCP Overview

Congestion avoidance
additive increase: starting from the rough estimate, linearly
increase the congestion window size to probe for additional
available bandwidth
multiplicative decrease: cut congestion window size aggressively if
a timeout occurs

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

Slide: 6Brian L. Tierney

TCP Overview

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

Fast Retransmit: retransmit after 3 duplicate acks (got 3 additional
packets without getting the one you are waiting for)

this prevents expensive timeouts
no need to go into “slow start” again

At steady state, CWND oscillates around the optimal window size
With a retransmission timeout, slow start is triggered again

Slide: 7Brian L. Tierney

Terminology

The term “Network Throughput” is vague and should be
avoided

Capacity: link speed
Narrow Link: link with the lowest capacity along a path
Capacity of the end-to-end path = capacity of the narrow link

Utilized bandwidth: current traffic load
Available bandwidth: capacity – utilized bandwidth

Tight Link: link with the least available bandwidth in a path
Achievable bandwidth: includes protocol and host issues

45 Mbps 10 Mbps 100 Mbps 45 Mbps

Narrow Link
Tight Link

source sink

Slide: 8Brian L. Tierney

More Terminology

RTT: Round-trip time
Bandwidth*Delay Product = BDP

The number of bytes in flight to fill the entire path
Example: 100 Mbps path; ping shows a 75 ms RTT

BDP = 100 * 0.075 / 2 = 3.75 Mbits (470 KB)
LFN: Long Fat Networks

A network with a large BDP

Slide: 9Brian L. Tierney

TCP Performance Tuning Issues

Getting good TCP performance over high-latency
high-bandwidth networks is not easy!
You must keep the pipe full, and the size of the
pipe is directly related to the network latency

Example: from LBNL (Berkeley, CA) to ANL (near
Chicago, IL), the narrow link is 1000 Mbits/sec, and the
one-way latency is 25ms

Bandwidth = 539 Mbits/sec (67 MBytes/sec) (OC12 =
622 Mbps - ATM and IP headers)

Need (1000 / 8) * .025 sec = 3.125 MBytes of data “in
flight” to fill the pipe

Slide: 10Brian L. Tierney

Setting the TCP buffer sizes

It is critical to use the optimal TCP send and receive
socket buffer sizes for the link you are using.

Recommended size = 2 x Bandwidth Delay Product (BDP)
if too small, the TCP window will never fully open up
if too large, the sender can overrun the receiver, and the TCP
window will shut down

Default TCP buffer sizes are way too small for this type of
network

default TCP send/receive buffers are typically 64 KB
with default TCP buffers, you can only get a small % of the
available bandwidth!

Slide: 11Brian L. Tierney

Importance of TCP Tuning
Th

ro
u g

h p
ut

 (M
bi

ts
/s

e c
)

Tuned for
LAN

Tuned for
WAN

Tuned for
Both300

264

112

264

200

152
112100

44

512 KB TCP
Buffers

64KB TCP
Buffers

LAN (rtt = 1ms)
WAN (rtt = 50ms)

Slide: 12Brian L. Tierney

TCP Buffer Tuning: System

Need to adjust system max TCP buffer
Example: in Linux (2.4 and 2.6) add the entries below to the file
/etc/sysctl.conf, and then run "sysctl -p”

increase TCP max buffer size
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
increase Linux autotuning TCP buffer limits
min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

Similar changes needed for other Unix OS’s
For more info, see: http://dsd.lbl.gov/TCP-Tuning/

Slide: 13Brian L. Tierney

TCP Buffer Tuning: Application
Must adjust buffer size in your applications:

int skt, int sndsize = 2 * 1024 * 1024;
err = setsockopt(skt, SOL_SOCKET, SO_SNDBUF,

(char *)&sndsize,(int)sizeof(sndsize));
and/or

err = setsockopt(skt, SOL_SOCKET, SO_RCVBUF,
(char *)&sndsize,(int)sizeof(sndsize));

It’s a good idea to check the following:
err = getsockopt(skt, SOL_SOCKET, SO_RCVBUF,

(char *)&sockbufsize, &size);

If (size != sndsize)

printf(stderr, “Warning: requested TCP buffer of %d, but only got %d
\n”, sndsize, size);

Slide: 14Brian L. Tierney

Determining the Buffer Size

The optimal buffer size is twice the bandwidth*delay
product of the link:

buffer size = 2 * bandwidth * delay

The ping program can be used to get the delay
e.g.: >ping -s 1500 lxplus.cern.ch
1500 bytes from lxplus012.cern.ch: icmp_seq=0. time=175. ms
1500 bytes from lxplus012.cern.ch: icmp_seq=1. time=176. ms
1500 bytes from lxplus012.cern.ch: icmp_seq=2. time=175. ms

pipechar or pathrate can be used to get the bandwidth of
the slowest hop in your path. (see next slides)
Since ping gives the round trip time (RTT), this formula
can be used instead of the previous one:

buffer size = bandwidth * RTT

Slide: 15Brian L. Tierney

Buffer Size Example
ping time = 50 ms
Narrow link = 500 Mbps (62 Mbytes/sec)

e.g.: the end-to-end network consists of all 1000 BT
ethernet and OC-12 (622 Mbps)

TCP buffers should be:
.05 sec * 62 = 3.1 Mbytes

Slide: 16Brian L. Tierney

Sample Buffer Sizes

UK to...
UK (RTT = 5 ms, narrow link = 1000 Mbps) : 625 KB
Europe: (25 ms, narrow link = 500 Mbps): 1.56 MB
US: (150 ms, narrow link = 500 Mbps): 9.4 MB
Japan: (RTT = 260, narrow link = 150 Mbps): 4.9 MB

Note: default buffer size is usually only 64 KB, and default
maximum buffer size for is only 256KB

Linux Autotuning default max = 128 KB;
10-150 times too small!

Slide: 17Brian L. Tierney

More Problems: TCP congestion control

Path = LBL
to CERN
(Geneva)
OC-3, (in
2000), RTT
= 150 ms

average
BW =
30 Mbps

Slide: 18Brian L. Tierney

Work-around: Use Parallel Streams

graph from Tom Dunigan, ORNL

RTT = 70 ms

Slide: 19Brian L. Tierney

Tuned Buffers vs. Parallel Steams

0
5

10
15
20
25
30

no tuning tuned
TCP

buffers

10
parallel

streams,
no tuning

tuned
TCP

buffers, 3
parallel
streams

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

)

Slide: 20Brian L. Tierney

Parallel Streams Issues

Potentially unfair
Places more load
on the end hosts
But they are
necessary when
you don’t have root
access, and can’t
convince the
sysadmin to
increase the max
TCP buffers

graph from Tom Dunigan, ORNL

http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

Network Monitoring Tools

Slide: 22Brian L. Tierney

traceroute

>traceroute pcgiga.cern.ch
traceroute to pcgiga.cern.ch (192.91.245.29), 30 hops max, 40 byte packets
1 ir100gw-r2.lbl.gov (131.243.2.1) 0.49 ms 0.26 ms 0.23 ms
2 er100gw.lbl.gov (131.243.128.5) 0.68 ms 0.54 ms 0.54 ms
3 198.129.224.5 (198.129.224.5) 1.00 ms *d9* 1.29 ms
4 lbl2-ge-lbnl.es.net (198.129.224.2) 0.47 ms 0.59 ms 0.53 ms
5 snv-lbl-oc48.es.net (134.55.209.5) 57.88 ms 56.62 ms 61.33 ms
6 chi-s-snv.es.net (134.55.205.102) 50.57 ms 49.96 ms 49.84 ms
7 ar1-chicago-esnet.cern.ch (198.124.216.73) 50.74 ms 51.15 ms 50.96 ms
8 cernh9-pos100.cern.ch (192.65.184.34) 175.63 ms 176.05 ms 176.05 ms
9 cernh4.cern.ch (192.65.185.4) 175.92 ms 175.72 ms 176.09 ms

10 pcgiga.cern.ch (192.91.245.29) 175.58 ms 175.44 ms 175.96 ms

Can often learn about the network from the router names:
ge = Gigabit Ethernet
oc48 = 2.4 Gbps (oc3 = 155 Mbps, oc12=622 Mbps)

Slide: 23Brian L. Tierney

Iperf

iperf : very nice tool for measuring end-to-end TCP/UDP performance
http://dast.nlanr.net/Projects/Iperf/
Can be quite intrusive to the network

Example:
Server: iperf -s -w 2M
Client: iperf -c hostname -i 2 -t 20 -l 128K -w 2M

Client connecting to hostname
[ID] Interval Transfer Bandwidth
[3] 0.0- 2.0 sec 66.0 MBytes 275 Mbits/sec
[3] 2.0- 4.0 sec 107 MBytes 451 Mbits/sec
[3] 4.0- 6.0 sec 106 MBytes 446 Mbits/sec
[3] 6.0- 8.0 sec 107 MBytes 443 Mbits/sec
[3] 8.0-10.0 sec 106 MBytes 447 Mbits/sec
[3] 10.0-12.0 sec 106 MBytes 446 Mbits/sec
[3] 12.0-14.0 sec 107 MBytes 450 Mbits/sec
[3] 14.0-16.0 sec 106 MBytes 445 Mbits/sec
[3] 16.0-24.3 sec 58.8 MBytes 59.1 Mbits/sec
[3] 0.0-24.6 sec 871 MBytes 297 Mbits/sec

Slide: 24Brian L. Tierney

pathrate / pathload

Nice tools from Georgia Tech:
pathrate: measures the capacity of the narrow link
pathload: measures the available bandwidth

Both work pretty well.
pathrate can take a long time (up to 20 minutes)
These tools attempt to be non-intrusive

Open Source; available from:
http://www.pathrate.org/

Slide: 25Brian L. Tierney

pipechar

Tool to measure hop-by-hop available bandwidth,
capacity, and congestion
Takes 1-2 minutes to measure an 8 hop path
But not always accurate

Results affected by host speed
Hard to measure links faster than host interface

Results after a slow hop typically not accurate, for example, if the
first hop is a wireless link, and all other hops are 100 BT or faster,
then results are not accurate

client-side only tool: puts very little load on the network
(about 100 Kbits/sec)
Available from: http://dsd.lbl.gov/NCS/

part of the netest package

Slide: 26Brian L. Tierney

pipechar output

dpsslx04.lbl.gov(59)>pipechar firebird.ccs.ornl.gov

PipeChar statistics: 82.61% reliable

From localhost: 827.586 Mbps GigE (1020.4638 Mbps)

1: ir100gw-r2.lbl.gov (131.243.2.1)

| 1038.492 Mbps GigE <11.2000% BW used>

2: er100gw.lbl.gov (131.243.128.5)

| 1039.246 Mbps GigE <11.2000% BW used>

3: lbl2-ge-lbnl.es.net (198.129.224.2)

| 285.646 Mbps congested bottleneck <71.2000% B W used>

4: snv-lbl-oc48.es.net (134.55.209.5)

| 9935.817 Mbps OC192 <94.0002% BW used>

5: orn-s-snv.es.net (134.55.205.121)

| 341.998 Mbps congested bottleneck <65.2175% B W used>

6: ornl-orn.es.net (134.55.208.62)

| 298.089 Mbps congested bottleneck <70.0007% B W used>

7: orgwy-ext.ornl.gov (192.31.96.225)

| 339.623 Mbps congested bottleneck <65.5502% B W used>

8: ornlgwy-ext.ens.ornl.gov (198.124.42.162)

| 232.005 Mbps congested bottleneck <76.6233% B W used>

9: ccsrtr.ccs.ornl.gov (160.91.0.66)

| 268.651 Mbps GigE (1023.4655 Mbps)

10: firebird.ccs.ornl.gov (160.91.192.165)

Slide: 27Brian L. Tierney

tcpdump / tcptrace

tcpdump: dump all TCP header information for a specified
source/destination

ftp://ftp.ee.lbl.gov/

tcptrace: format tcpdump output for analysis using xplot
http://www.tcptrace.org/
NLANR TCP Testrig : Nice wrapper for tcpdump and tcptrace tools

http://www.ncne.nlanr.net/TCP/testrig/

Sample use:
tcpdump -s 100 -w /tmp/tcpdump.out host hostname
tcptrace -Sl /tmp/tcpdump.out
xplot /tmp/a2b_tsg.xpl

Slide: 28Brian L. Tierney

tcptrace and xplot

X axis is time
Y axis is sequence number
the slope of this curve gives the throughput over
time.
xplot tool make it easy to zoom in

Slide: 29Brian L. Tierney

Zoomed In View
Green Line: ACK values received from the receiver
Yellow Line tracks the receive window advertised from the receiver
Green Ticks track the duplicate ACKs received.
Yellow Ticks track the window advertisements that were the same as
the last advertisement.
White Arrows represent segments sent.
Red Arrows (R) represent retransmitted segments

Slide: 30Brian L. Tierney

Other Tools

NLANR Tools Repository:
http://www.ncne.nlanr.net/software/tools/

SLAC Network MonitoringTools List:
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

Slide: 31Brian L. Tierney

Other TCP Issues

Things to be aware of:
TCP slow-start

On a path with a 50 ms RTT, it takes 12 RTT’s to
ramp up to full window size, so need to send about
10 MB of data before the TCP congestion window
will fully open up.

host issues
Memory copy speed
I/O Bus speed
Disk speed

Slide: 32Brian L. Tierney

TCP Slow Start

Slide: 33Brian L. Tierney

Duplex Mismatch Issues

A common source of trouble with Ethernet
networks is that the host is set to full duplex, but
the Ethernet switch is set to half-duplex, or visa
versa.
Most newer hardware will auto-negotiate this, but
with some older hardware, auto-negotiation
sometimes fails

result is a working but very slow network (typically only
1-2 Mbps)
best for both to be in full duplex if possible, but some
older 100BT equipment only supports half-duplex

NDT is a good tool for finding duplex issues:
http://e2epi.internet2.edu/ndt/

Slide: 34Brian L. Tierney

Jumbo Frames

Standard Ethernet packet is 1500 bytes (aka: MTU)
Some gigabit Ethernet hardware supports “jumbo frames”
(jumbo packet) up to 9 KBytes

This helps performance by reducing the number of host interrupts
Some jumbo frame implementations do not interoperate
Most routers allow at most 4K MTUs

First Ethernet was 3 Mbps (1972)
First 10 Gbit/sec Ethernet hardware: 2001

Ethernet speeds have increased 3000x since the 1500 byte frame
was defined
Computers now have to work 3000x harder to keep the network full

Slide: 35Brian L. Tierney

Linux Autotuning

Sender-side TCP buffer autotuning introduced in Linux 2.4
TCP send buffer starts at 64 KB
As the data transfer takes place, the buffer size is continuously re-
adjusted up max autotune size (default = 128K)

Need to increase defaults: (in /etc/sysctl.conf)

increase TCP max buffer size
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
increase Linux autotuning TCP buffer limits
min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

Receive buffers need to be bigger than largest send buffer used
Use setsockopt() call

Slide: 36Brian L. Tierney

Linux 2.4 Issues
ssthresh caching

ssthresh (Slow Start Threshold): size of CWND to use when
switching from exponential increase to linear increase
The value for ssthresh for a given path is cached in the routing
table.
If there is a retransmission on a connection to a given host, then all
connections to that host for the next 10 minutes will use a reduced
ssthresh.
Or, if the previous connect to that host is particularly good, then
you might stay in slow start longer, so it depends on the path
The only way to disable this behavior is to do the following before
all new connections (you must be root):

sysctl -w net.ipv4.route.flush=1
The web100 kernel patch adds a mechanism to permanently
disable this behavior:

sysctl -w net.ipv4.web100_no_metrics_save = 1

Slide: 37Brian L. Tierney

ssthresh caching

•The value of
CWND where
this loss
happened will
get cached

Slide: 38Brian L. Tierney

Linux 2.4 Issues (cont.)
SACK implementation problem

For very large BDP paths where the TCP window is > 20 MB, you
are likely to hit the Linux SACK implementation problem.
If Linux has too many packets in flight when it gets a SACK event, it
takes too long to located the SACKed packet,

you get a TCP timeout and CWND goes back to 1 packet.
Restricting the TCP buffer size to about 12 MB seems to avoid this
problem, but limits your throughput.
Another solution is to disable SACK.
sysctl -w net.ipv4.tcp_sack = 0

This is still a problem in 2.6, but they are working on a solution
Transmit queue overflow

If the interface transmit queue overflows, the Linux TCP stack
treats this as a retransmission.
Increasing txqueuelen can help:
ifconfig eth0 txqueuelen 1000

http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

Recent/Current TCP Work

Slide: 40Brian L. Tierney

TCP Response Function

Well known fact that TCP does not scale to high-
speed networks
Average TCP congestion window =
segments

p = packet loss rate
What this means:

For a TCP connection with 1500-byte packets and a
100 ms round-trip time, filling a 10 Gbps pipe would
require a congestion window of 83,333 packets, and a
packet drop rate of at most one drop every
5,000,000,000 packets.
requires at most one packet loss every 6000s, or
1h:40m to keep the pipe full

p2.1

Slide: 41Brian L. Tierney

Proposed TCP Modifications

High Speed TCP: Sally Floyd
http://www.icir.org/floyd/hstcp.html

BIC/CUBIC:
http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/

LTCP (Layered TCP)
http://students.cs.tamu.edu/sumitha/research.html

HTCP: (Hamilton TCP)
http://www.hamilton.ie/net//htcp/

Scalable TCP
http://www-lce.eng.cam.ac.uk/~ctk21/scalable/

Slide: 42Brian L. Tierney

Proposed TCP Modifications (cont.)

XCP:
XCP rapidly converges on the optimal congestion window using a
completely new router paradigm.

This makes it very difficult to deploy and test
http://www.ana.lcs.mit.edu/dina/XCP/

FAST TCP:
http://netlab.caltech.edu/FAST/

Each if these alternatives give roughly similar throughput
Vary mainly in “stability” and “friendliness” with other protocols

Each of these require sender-side only modifications to
standard TCP

Slide: 43Brian L. Tierney

TCP: Reno vs. BIC

TCP-Reno
(Linux 2.4)

BIC-TCP
(Linux 2.6)

Slide: 44Brian L. Tierney

TCP: Reno vs. BIC

• BIC-TCP
recovers from
loss more
aggressively
than TCP-Reno

Slide: 45Brian L. Tierney

Sample Results
From Doug Leith, Hamilton Institute, http://www.hamilton.ie/net/eval/

Fairness
Between Flows

Link Utilization

Slide: 46Brian L. Tierney

New Linux 2.6 changes

Added receive buffer autotuning: adjust receive window
based on RTT

sysctl net.ipv4.tcp_moderate_rcvbuf

Still need to increase max value: net.ipv4.tcp_rmem
Starting in Linux 2.6.7 (and back-ported to 2.4.27), BIC
TCP is part of the kernel, and enabled by default.
Bug found that caused performance problems under some
circumstances, fixed in 2.6.11.
Added ability to disable ssthresh caching (like web100)
net.ipv4.tcp_no_metrics_save = 1

Slide: 47Brian L. Tierney

Linux 2.6 Issues

"tcp segmentation offload” issue:
Linux 2.6 (< 2.6.11) has bug with certain Gigabit and
10 Gig ethernet drivers and NICs that support "tcp
segmentation offload",

These include Intel e1000 and ixgb drivers,
Broadcom tg3, and the s2io 10 GigE drivers.
To fix this problem, use ethtool to disable
segmentation offload:
ethtool -K eth0 tso off

Bug fixed in Linux 2.6.12

Slide: 48Brian L. Tierney

Linux 2.6.12-rc3 Results
Path Linux 2.4 Linux 2.6 with

BIC
Linux 2.6, no
BIC

300 Mbps

300 Mbps

70 Mbps

700 Mbps

830 Mbps

560 Mbps

LBL to ORNL
RTT = 67 ms

500 Mbps

LBL to PSC
RTT = 83 ms

625 Mbps

LBL to IE
RTT = 153 ms

140 Mbps

Results = Peak Speed during 3 minute test
Note: BIC is ON by default in Linux 2.6
Sending host = 2.8 GHz Intel Xeon with Intel e1000 NIC

Slide: 49Brian L. Tierney

Linux 2.6.12-rc3 Results

TCP Results

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

time slot (5 second intervals)

Linux 2.6, BIC TCP

Linux 2.4

Linux 2.6, BIC off

RTT = 67 ms

Slide: 50Brian L. Tierney

Remaining Linux BIC Issues

But: on
some paths
BIC still
seems to
have
problems…

RTT = 83 ms

http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

Application Performance Issues

Slide: 52Brian L. Tierney

Techniques to Achieve High
Throughput over a WAN

Consider using multiple TCP sockets for the data
stream
Use a separate thread for each socket
Keep the data pipeline full

use asynchronous I/O
overlap I/O and computation

read and write large amounts of data (> 1MB) at a time
whenever possible
pre-fetch data whenever possible

Avoid unnecessary data copies
manipulate pointers to data blocks instead

Slide: 53Brian L. Tierney

Use Asynchronous I/O

I/O followed by
processing

overlapped I/O and
processing

almost a 2:1 speedup

Next IO starts
when processing
ends

remote IO

process previous
block

Slide: 54Brian L. Tierney

Throughput vs. Latency

Most of the techniques we have discussed are designed to
improve throughput
Some of these might increase latency

with large TCP buffers, OS will buffer more data before sending it
Goal of a distributed application programmer:

hide latency
Some techniques to help decrease latency:

use separate control and data sockets
use TCP_NODELAY option on control socket

combine control messages together into 1 larger message
whenever possible on TCP_NODELAY sockets

Slide: 55Brian L. Tierney

scp Issues

Don’t use scp to copy large files!
scp has its own internal buffering/windowing that
prevents it from ever being able to fill LFNs!

Explanation of problem and openssh patch
solution from PSC

http://www.psc.edu/networking/projects/hpn-ssh/

Slide: 56Brian L. Tierney

Conclusions
The wizard gap is starting to close (slowly)

If max TCP buffers are increased
Tuning TCP is not easy!

no single solution fits all situations
need to be careful TCP buffers are not too big or too small
sometimes parallel streams help throughput, sometimes they hurt

Linux 2.6 helps a lot
Design your network application to be as flexible as possible

make it easy for clients/users to set the TCP buffer sizes
make it possible to turn on/off parallel socket transfers

probably off by default
Design your application for the future

even if your current WAN connection is only 45 Mbps (or less), some day it
will be much higher, and these issues will become even more important

Slide: 57Brian L. Tierney

For More Information

http://dsd.lbl.gov/TCP-tuning/
links to all network tools mentioned here
sample TCP buffer tuning code, etc.

BLTierney@LBL.GOV

