
Published on Jisc community (https://community.jisc.ac.uk)

Home > Advisory services > Wireless Technology Advisory Service > Guides > IEEE 802.1X implementation at Janet-
connected organisations

IEEE 802.1X implementation at Janet-
connected organisations

IEEE 802.1X implementation at Janet-connected
organisations

022 (04/08)

This document was produced to share knowledge, experience and current developments
surrounding campus 802.1X implementation within the JANET community.

Readers are assumed to have a basic knowledge of networking concepts and preventive
security awareness. A companion technical guide Security Matters is available [1].

Scope and Audience

Providing network access within large organisations is at best challenging and at worst near
impossible. Users want the ability to be able to start up their operating system and have
instantaneous network access. However this is usually in conflict with the organisational need
to prevent unauthorised access to the network and also to provide accountability of users
actions.

An IEEE standard 802.1X [2] see provides a mechanism for network port access control and
manages the process of authenticating and authorising attached devices by extending the
EAP protocol over the network. Network access ports can take various forms such as: a
network socket, switch port, or wireless access point.

EAP (Extensible Authentication Protocol) is a powerful tool in the network administrator’s tool
box for providing flexible network access through authentication, authorisation and
accounting. EAP is an authentication framework which provides multiple methods for
authentication (Aboba, Blunk, Vollbrecht, Carlson, & Levkowetz, 2004 [3]). Through the use of
802.1X and 802.11i, EAP can be used to provide enterprise network access control (NAC) for
both wireless and wired networks.

This guide aims to provide a background to the implementation of 802.1X as a network control
mechanism on both wired and wireless networks at JANET-connected organisations.

Major changes such as the introduction of 802.1X will almost certainly create concerns
amongst various people involved in the process. The process of introduction will most likely
involve a consultation process with the stakeholders, as it represents a fundamental change

https://community.jisc.ac.uk
https://community.jisc.ac.uk/
https://community.jisc.ac.uk/library/advisory-services
https://community.jisc.ac.uk/library/advisory-services/wireless-technology-advisory-service
https://community.jisc.ac.uk/library/advisory-services/guides
http://community.ja.net/library/janet-services-documentation/security-matters-technical-guide
http://grouper.ieee.org/groups/802/1/
http://www.ietf.org/rfc/rfc3748.txt

to the way users access the network and is a process which requires planning. Implementing
802.1X in an educational environment is a major undertaking and should not be taken lightly.

History of 802.1X

Initially developed by 3Com, HP and Microsoft®, 802.1X was first recognised by IEEE in
January 1999 and was first approved as a standard in June 2001 (IEEE Computer Society,
2001 [4]). It was developed as a mechanism for preventing unauthorised access to a LAN at
the switch port level, the goal being to enable organisations to protect networks sockets in
public spaces within buildings.

It is important to consider that there are many components to a complete 802.1X
implementation and the technologies have evolved over a very short space of time.

EAP is the cornerstone of the 802.1X standard and was originally developed in 1998. The
EAP protocol, RFC 2284 [5], has been refined over time until a significant revision in 2004
which lead to the protocol which is familiar to network administrators today.

EAP was originally based upon the Point-to-Point Protocol (PPP) and was associated with
Serial and not Ethernet technologies. Within the PPP definition Link Control Protocol is
outlined, describing how the link should be established, whilst EAP describes the
authentication phase.

RADIUS (Remote Authentication Dial-In Users Service) originated with the Internet
Engineering Task Force (IETF) group with a 1994 draft standard submission. In 1997 the first
RADIUS RFC was released and then later revised. RFC 2865 [6] was released in June 2000.
RADIUS has been expanded with a number of extensions to provide services for modern
network deployments. These extensions have largely rendered the proposed replacement for
RADIUS, named Diameter [7], redundant.

Using 802.1X to Improve Network Security

Through the use of 802.1X, network security can be improved by reducing unauthorised
network access. 802.1X is superior to MAC Address Authentication which may already be
implemented; significant weaknesses can be found in the ability to spoof the MAC Address of
devices connecting. 802.1X operates at the Data Link Layer, Layer 2, of the OSI model and
enables the use of EAPOL (Extensible Authentication Protocol Over LANs).

User or device credentials are encapsulated within an EAPOL packet before it is transmitted
onto the network before reaching the authenticator. This is a low weight simple protocol with
few different types of packet, mainly: Request Identity and Response packets.

EAPOL is simply a mechanism to encapsulate EAP messages within that of the underlying
protocol.

Figure 1: Gaining access to a network using 802.1X

http://standards.ieee.org/getieee802/
http://standards.ieee.org/getieee802/
http://www.ietf.org/rfc/rfc2284.txt
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc3588.txt

[8]

The operation of 802.1X is covered in detail within Chapter 2 of this Technical Guide. The
device running the 802.1X supplicant and the network port secured by 802.1X is referred to as
Port Access Entity (PAE).

Preventing Unauthorised Network Access

The very purpose of 802.1X is to control port access and prevent unauthorised users from
using your network. How can this behaviour benefit your organisation?

The obvious advantage is that people who are not members of your organisation or
authorised visitors will be denied access to your network. This is a valuable tool in preventing
electronic crime as it is often very difficult to secure every socket that a visitor could gain
access to. However, stopping unknown users is not where the 802.1X functionality ends.

Figure 2: Preventing Unauthorised Access with 802.1X

[9]

Viruses and Compromised Computers

Every large network is likely to have seen computers which have been compromised by
viruses, worms and trojans. Restricting the network access for these computers is a standard
requirement of the IT Service provider at any organisation. 802.1X together with other
systems can help by providing the facility to quarantine compromised computers.

802.1X is not a mechanism for detecting compromised computers; this role is undertaken by
intrusion detection/prevention systems or anomaly detection systems. It is important that the
detection device has a feedback mechanism that can utilise 802.1X as part of the mitigation
process, ensuring the client moves to a quarantine VLAN by forcing the client to re-
authenticate. Subsequent attempts by the infected client to connect to the network will result

http://community.ja.net/system/files/images/tg-ieee8021x-01.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-02.jpg

in the same quarantine VLAN being presented.

Once a machine has been identified as being compromised, the organisation’s RADIUS
servers can be instructed to place a machine, and / or user, onto a quarantine VLAN. The
RADIUS server can identify the machine by its active directory credentials, user login details,
or by MAC address. In most case you will want to quarantine either the MAC address or the
active directory credentials (if machine authentication is being used).

Figure 3: Preventing a worm outbreak with 802.1X and IDS

[10]

Location Aware Networking

Being able to control network access based upon location is very desirable. For example it is
common for students to be prohibited from unplugging organisational lab computers and
plugging in their own laptops. As 802.1X authentication identifies the point at which the
supplicant is trying to access the network, it is very easy to prevent groups of user computers
from accessing the network in specific locations.

Furthermore with the accounting and logging provided by authentication servers, attempts to
access the network in a prohibited manner can be logged and reported, and if required users
can be banned. Other examples include IT Service staff being given appropriate VLANs with
elevated access rights.

Per Client Accounting

Using RADIUS servers and 802.1X will provide your organisation with accounting logs for
each user on the network. These logs contain information such as: the location; switch port or
access point; where the user was connected; the client’s IP Address; the amount of data
transferred; and when the session began and ended. This is valuable information when
providing audit trials or trying to locate problems. Additionally many IDS/IPS solutions can
work in co-operation with RADIUS server accounting to provide enhanced features.

Guest Access

http://community.ja.net/system/files/images/tg-ieee8021x-03.jpg

Providing access to visitors poses major security network risks. The traditional approach has
been to make sockets available in public locations and then to lock down those sockets and
restrict their network functionality. This was usually done in one of the following ways:

DMZ – Sockets in public locations are put onto a restricted VLAN which gives limited
web and email access, and is firewalled off from the rest of your organisation’s network
Walled Garden / Captive Portal – Clients using sockets in public locations are redirected
to a HTTPS login page. After authenticating in, a hole in the firewall is created for their
MAC address and they are able to access the network. This is often combined with a
DMZ so that even after logging in visitors are isolated from the rest of the network.

These methods of securing network sockets are simple to implement and work well, but are
not without their limitations. Firstly a DMZ offers no ability to restrict who is joining your
network. This makes accounting very difficult as you cannot track down who was using a
particular MAC address. Captive portals partially address this by denying access until the
client logs in; however this is only done by MAC address which can be trivially spoofed.

The 802.1X provision for guest access can offer much greater security and functionality than a
captive portal based solution. Firstly 802.1X securely identifies the client using techniques
which cannot be spoofed. This means you can identify, with greater certainty, who clients are
and you can relax restrictions on VLANs used by visitors. 802.1X also provides the ability to
trivially provide different VLANs to different classes of user (or even individual users) through
the use of VLAN override options.

VLAN override allows the authentication server to instruct the switch as to which VLAN to put
the client on. This is useful as staff who plug into a socket can be given one VLAN, students
another, and guests yet another. In advanced deployments VLANs can follow particular
individuals around the organisation.

Implementation of 802.1X does not mean existing captive portal based solutions have to be
abandoned. 802.1X can happily co-exist with captive portals. In most cases having an
alternative solution is preferential as some devices may not be capable of 802.1X
authentication. Also a dual system allows for a smoother transition of clients from the old
system to 802.1X. To work with a captive portal, switch ports can be configured with a ‘Guest
VLAN’; clients which do not attempt to 802.1X authenticate will be given the ‘Guest VLAN’,
likewise so will Supplicant PAEs that request the guest VLAN from the Authenticator PAE.
This means that clients which do not attempt to 802.1X authenticate can fall through on the
existing captive portal based solution. Likewise both visitors who 802.1X authenticate and
those who do not can feed a DMZ network.

Using 802.1X, JANET Roaming can easily be provided in areas accessible to visitors from
other organisations. When using their JANET Roaming credentials, visitors can authenticate
themselves and be provided with your organisation’s Eduroam VLAN for access to the JANET
network.

Authentication, Authorisation and Accounting (AAA)

802.1X can act as an enabler to provide AAA functions within an organisation’s network. AAA
stands for Authentication, Authorisation and Accounting and is provided by a Network

Authentication Server. This acronym is also sometimes referred to as Triple A and may also
include a fourth A, Auditing.

Figure 4: Location of the Network Authentication Server

[11]

The Authentication element of AAA verifies the credentials of users presenting access tickets
such as passwords, certificates or hardware keys. The Authorisation element of AAA provides
details of the services available to the authenticated user in order that the authenticator
system can provide the appropriate level of service. In this case the switch is the authenticator
system and the appropriate level of service is a VLAN and other related network access
control features.

The Accounting element of AAA provides a log of resource utilisation, typically used in the
education sector to provide a log of user authentication. However this can also be used for
billing, network trend monitoring and within Management Information Systems.

AAA is a standards-based system which allows interoperability with a large number of
systems. AAA servers typically take the form of a RADIUS server. Open Source variants exist
like FreeRADIUS as well as software for the Microsoft® platform.

802.1X Overview

802.1X Overview

How 802.1X works

There are three main components in the 802.1X authentication cycle:

Supplicant Port Access Entity (PAE). This is software on the client device which handles
the client side of the authentication conversation.
Authenticator PAE. This is the device which controls the port access to the network.
Supplicant PAE communications are tunnelled through the Authenticator PAE.
Network Authentication Server (NAS). This is the server which authenticates the client
through EAP authentication conversations with the Supplicant PAE.

http://community.ja.net/system/files/images/tg-ieee8021x-04.jpg

The deployment of 802.1X is over-simplified in the diagrams. However, following the
implementation of redundant network authentication servers within the LAN, authenticator
systems PAE will form part of the access layer switches.

Figure 5: Three main components of 802.1X

[12]

When a device is connected to a 802.1X enabled switch port, the link physically becomes
active and both the 802.1X supplicant on the client and the switch detect the presence of a
device at the either end of the link.

Modern switches are fairly complex and there are a number of stages before full connectivity
is established. This is important for the debugging of the connection stage as many problems
can cause 802.1X to fail including: a badly configured supplicant, faulty cable, network card or
switch configuration file.

1. Initially when a client connects to the network, the Authenticator PAE (the switch or AP)
initiates an authentication conversation by sending an EAP-Request. If the Authenticator
PAE does not receive a response it will time-out and set the port into an unauthorised
state.

Figure 6: Initial client connection to the network

[13]

2. Once connected, if the Supplicant PAE does not receive an authentication initiation
frame, or misses it due to timing, the Supplicant PAE will send an EAPOL-Start frame to
the authenticator. Either the Authenticator PAE or the Supplicant PAE can start an 802.1X
authentication conversation.

Figure 7: EAPOL Start Frame from client

http://community.ja.net/system/files/images/tg-ieee8021x-05.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-06.jpg

[14]

3. Upon receiving the EAPOL-Start the Authenticator PAE returns an EAP-Request to the
Supplicant PAE.

Figure 8: EAP-Request sent to Supplicant PAE

[15]

4. After receiving the EAP-Request the Supplicant PAE sends an EAP-Response
containing the client’s identity. This is relayed by the Authenticator PAE to the Network
Authentication Server.

Figure 9: EAP-Response Relayed to the Network Access Control via the Authenticator

[16]

5. The Network Authentication Server, via the Authenticator PAE, performs an EAP
authentication conversation with the Supplicant PAE, the result of which is either an EAP-
Success or an EAP-Fail.

Figure 10: EAP-Authentication Conversation

[17]

http://community.ja.net/system/files/images/tg-ieee8021x-07.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-08.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-09.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-10.jpg

6. Upon receiving an EAP-Success the Authenticator PAE authorises the port and the
client joins the network.

Figure 11: Port Authorisation

[18]

7. Finally, to log off, the Supplicant PAE sends an EAPOL-LOGOFF. The Authenticator
PAE unauthorises the port and ends the accounting session for the Supplicant PAE.

Figure 12: EAPOL-LogOFF and Client Disconnection

[19]

Within 802.1X authentication, EAP is used as a mechanism for communicating authentication
information between the supplicant and the authentication server.

Within the EAP-Request the Authenticator PAE can request a particular EAP method (such as
PEAP). If the Supplicant PAE supports the requested EAP method then an authentication can
take place. If the Supplicant PAE does not support the EAP method then the Authenticator
PAE will request a different EAP Method.

EAP Methods

EAP is a framework which has numerous implemented mechanisms for authentication. These
mechanisms are more commonly referred to as EAP types or EAP methods. There are many
EAP types; however this Technical Guide will focus on the most commonly used EAP
methods: EAP-PEAPv0 (MSCHAPv2) and EAP-TTLS (MSCHAPv2). EAP methods will often
use an inner authentication protocol, with the EAP method being the wrapper for the inner
authentication.

EAP-PEAPv0

Protected Extensible Authentication Protocol (PEAP) is an EAP method, based upon
EAPTLS, that was originally developed by Microsoft®, Cisco® and RSA Security (Kamath,
Palekar, & Wodrich, 2002 [20]). PEAP is commonly deployed in Microsoft® Windows®
environments as it is the EAP method favoured by Microsoft®. Both the Windows XP® 802.1X
supplicant and the Windows Vista® supplicant support PEAP natively. PEAP is most

http://community.ja.net/system/files/images/tg-ieee8021x-11.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-12.jpg
http://www.tools.ietf.org/html/draft-kamath-pppext-peapv0-00
http://www.tools.ietf.org/html/draft-kamath-pppext-peapv0-00

commonly used with the Microsoft® Challenge Handshake Authentication Protocol version 2
(MSCHAPv2) as an inner authentication method.

PEAP-MSCHAPv2 authenticates the server using a PKI (Public Key Infrastructure) certificate
and the client using password based credentials. User credentials are protected by the
formation of a TLS (Transport Layer Security) tunnel between the Supplicant PAE and the
authentication server. The creation of the TLS tunnel is achieved using a server side
certificate which authenticates the server’s identity. Inside of the TLS Tunnel MSCHAPv2 can
be used for either user authentication, using the client’s username and password, or for
machine authentication using the machine name and active directory credentials.

Figure 13 shows a typical PEAP-MSCHAPv2 authentication. PEAP authentication has two
phases: an initial phase to set up the TLS tunnel, and then a second phase to perform the
authentication of the user or machine using MSCHAPv2 within the TLS tunnel. The PEAP
authentication ends with either an EAP-Success or an EAP-Failure sent in clear text.

Figure 13: Example PEAP-MSCHAPv2 Conversation

[21]

EAP-TTLS

EAP-Tunnelled Transport Layer Security (EAP-TTLS) is an EAP method developed by Funk
Software and Certicom (Funk & Blake-Wilson, 2002 [22]). Like PEAP, EAP-TTLS is an EAP
method which builds upon EAP-TLS. EAP-TTLS establishes a TLS tunnel through which the
authentication can take place. In the establishment of the TLS tunnel the client / server
authentication can either be mutual, like EAP-TLS, or just authentication of the server. As with
other EAP-TLS based methods the authentication is through PKI certificates. After
establishment of a TLS tunnel EAP-TTLS supports a number of inner authentication protocols,

http://community.ja.net/system/files/images/tg-ieee8021x-13.jpg
http://tools.ietf.org/html/draft-funk-eap-ttls-v1-01

including PAP and MSCHAPv2.

RADIUS

A key part of the 802.1X mechanism is the authentication server. The authentication server,
as the title suggests, handles the authentication requests from the client.

Probably the most commonly used authentication server (for 802.1X) is the RADIUS server.
RADIUS servers are AAA servers which allow not only the authentication of 802.1X clients but
also handle authorisation and the accounting of the users’ session.

Microsoft® Windows Server® 2003 includes an industry-recognised RADIUS server called
IAS (Internet Authentication Service). It is a technically capable implementation of RADIUS
and is well regarded within the industry.

An alternative is the Cisco® ACS implementation which provides integration with the Cisco®
portfolio of technology. Some protocols like LEAP and EAP-FAST are easier to implement
with the Cisco® ACS; however many organisations use Open Source RADIUS
implementations like FreeRADIUS.

Display as Single Column?:

Networking infrastructure

Networking infrastructure

Prerequisites

To deploy 802.1X within your organisation you will require suitable infrastructure capable of
supporting it.

You will require at least one RADIUS server which is accessible by all Authenticator PAEs
(switches and access points). However, as the RADIUS server is integral to authenticating
your organisation will most likely require multiple redundant RADIUS servers for business
continuity purposes; the number of which depends upon the size of the organisation and the
number of clients being authenticated. The location of RADIUS servers needs to be carefully
considered as authentication traffic from all devices will be handled by these servers.

Switches

To offer 802.1X, your organisation will require edge switches which are capable of providing
802.1X port control. For most organisations with full managed switching architecture this
should not be an issue. However older managed switches (incapable of 802.1X), unmanaged
switches and hubs will need to be replaced with new modern equipment. Finally the software
and firmware on switches may need to be upgraded to the latest versions to provide full
compatibility; some older device firmware may only have partial 802.1X support.

Cisco® Catalyst Switches

Cisco® Catalyst switches offer the ability to control edge port access by using 802.1X to
authenticate, authorise and provide accounting for the client. This can be configured through a
terminal connection to the switch.

Please note: All examples use private IP address ranges; you will need to change these for
the relevant network infrastructure at your site.

To configure a Catalyst switch the RADIUS servers must first be defined in the switch
configuration together with their shared secrets. An entry must be added for each of your
organisation’s RADIUS servers. To do this type:

switch# conf t

switch(config)# radius-server host 192.168.10.50 auth-port 1812 acct-port 1813 key
<shared_secret>

After adding RADIUS server definitions, global settings need to be added for the RADIUS
servers. Add entries for the timeout between the switch and the server, as well as the
maximum number of retries and how many minutes to cease communications to a dead
server. Finally instruct the switch to allow the sending of vendor specific attributes for
authentication:

switch(config)# radius-server timeout 2

switch(config)# radius-server deadtime 1

switch(config)# radius-server retransmit 0

switch(config)# radius-server vsa send authentication

The next step is to enable AAA login and configure an AAA model for the RADIUS servers:

switch(config)# aaa new-model

switch(config)# aaa group server radius RADIUS-SERVERS

switch(config-sg-radius)# server 192.168.10.50 auth-port 1812

 acct-port 1813

switch(config-sg-radius)# aaa authentication dot1x default group RADIUS-
SERVERS

switch(config)# aaa authorization network default group RADIUS-SERVERS

switch(config)# aaa accounting dot1x default start-stop group RADIUS-SERVERS

After creating definitions for RADIUS servers and an AAA model, 802.1X can then be enabled
on the switch:

switch(config)# dot1x system-auth-control

If required the switch can be configured to allow client supplicants to request a guest VLAN:

switch(config)# dot1x guest-vlan supplicant

After configuring the global settings for the switch individual, port settings need to be applied.
First 802.1X needs to be enabled per port, and the switch configured to initiate an 802.1X
authentication when a client plugs in and not wait for the client to initiate an authentication:

switch(config)# int range fa0/1 – 48

switch(config-if-range)# dot1x pae authenticator

switch(config-if-range)# dot1x port-control auto

The next option to set is the behaviour of an authenticated port. This will set whether the
switch will allow multiple devices or a single device (or a multi domain) to connect:

switch(config-if-range)# dot1x host-mode single-host

To configure periodic reauthentication and set the number of times the switch will request
authentication from the client. The final line will set the switch to honour the session timeout
value set by the RADIUS server:

switch(config-if-range)# dot1x max-req 1

switch(config-if-range)# dot1x max-reauth-req 1

switch(config-if-range)# dot1x reauthentication

switch(config-if-range)# dot1x timeout reauth-period server

To set the guest and authentication failure VLANs:

switch(config-if-range)# dot1x guest-vlan 301

switch(config-if-range)# dot1x auth-fail vlan 301

Finally to set timeouts for the various 802.1X settings:

switch(config-if-range)# dot1x timeout quiet-period 5

switch(config-if-range)# dot1x timeout server-timeout 5

switch(config-if-range)# dot1x timeout tx-period 5

switch(config-if-range)# dot1x timeout supp-timeout 5

More information on Cisco® configuration can be found within the technical paper ‘Configuring
802.1X Port-Based Authentication’ on their technical support site:

http://www.cisco.com/en/US/docs/switches/lan/catalyst2950/software/release/12.1_9_ea1/configuration/guide/Sw8021x.html
[23]

Wireless Networks

You are most likely to see 802.1X deployment alongside 802.11 wireless networking in
enterprise sites, such as a university or large college. This additional layer of protection is
essential due to the inherent insecurity of wireless networks not using a physical medium, in
this case a cable. There are various solutions within the marketplace that attempt to address
the wireless network security issue; however it is difficult to mitigate all the risks with wireless
technology without fully implementing 802.1X.

To use the argument that user experience should negate 802.1X as a deployment strategy is
not likely to benefit the organisation in the long term. The advantages of a fully deployed
802.1X client or supplicant will allow users to take advantage of the JANET Roaming service
at other participating organisations as well as enjoying a secure wireless networking
experience at their home site.

Server configuration

Server configuration

Updated: 4/06/2021

The key component in 802.1X is the RADIUS server which is capable of AAA. There are
several widely-deployed commercial RADIUS servers available: Microsoft® IAS, Cisco® ACS,
Funk Steel-Belted Radius. There are also two widely deployed Open Source RADIUS servers
available, FreeRADIUS and RADIATOR. FreeRADIUS is non-commercial GPL software,
RADIATOR is commercial.

http://www.cisco.com/en/US/docs/switches/lan/catalyst2950/software/release/12.1_9_ea1/configuration/guide/Sw8021x.html

All servers have their strengths and weaknesses: Microsoft® IAS limits the type of
authentications (EAP-PEAP and EAP-TLS) and FreeRADIUS has third party commercial
support. However, all of them perform the core functionality required for central 802.1X
RADIUS authentication. As FreeRADIUS supports many types of authentication and
authorisation and is free, this Technical Guide documents the use of FreeRADIUS.

FreeRADIUS

FreeRADIUS is a popular Open Source RADIUS server which can operate in enterprise
environments handling tens of thousands of authentications a day.

This Technical Guide refers to FreeRADIUS version 2.0 for several reasons: firstly, when
installing FreeRADIUS 2.0, the EAP section is automatically populated with a working
certificate system ideal for testing (you should replace the certificates with appropriate
versions before going into service); the EAP engine is vastly improved over version 1.1.x (an
EAP authentication now only needs to pass through the LDAP or SQL section once, thus
vastly reducing load on such servers); and finally the server is now equipped with ‘unlang’ – a
pseudo code which enables very flexible checking parameters and testing loops in the main
configuration files.

Installing FreeRADIUS

Prerequisites: a Linux® server running a recent distribution (with kernel 2.6 or above), at least
OpenSSL 0.9.8b, development tools (GCC compiler) and a network interface able to
communicate with the NAS (e.g. switch, wireless access point or WiFi central controller). A
system with at least two NICs is recommended – one on a managed network and one on the
management network, with at least 100Mbit/s ports configured for full-duplex operation to
reduce latency.

Download FreeRADIUS from: http://www.freeradius.org/ [24]

There may be a version available for your distribution; however, check that it is a recent
version.

The current version of FreeRADIUS is 3.0.22 - the information below relating to version
1.1 is historical.

Whilst 1.1.x does not have the same flexibility if you are going to create or import your own
certificates, if you are familiar with the system then this guide is largely suitable for version
1.1.x too. 1.1.x specific issues may be highlighted.

After downloading, extract the .tar.gz archive and run the configure, make and make install
steps as per the INSTALL document within the archive. More advanced users might want to
run ./configure --help to check what special options might be appropriate. Please ensure that
you read the output of the ./configure stage. Check for any lines with ‘WARNING’ – you may
need to install several development/support packages to get FreeRADIUS to work with your
required environment.

http://www.freeradius.org/

After compilation and installing (you will have noted the generation of SSL certificates if this is
a first-time 2.0 install) FreeRADIUS is ready for configuring.

Whilst most of the configuration files will be very much site specific (sql.conf, proxy.conf,
LDAP/SQL authentication) a core set of configuration files are common to all systems for
802.1X authentication. After an initial editing of radiusd.conf to handle site-specific
requirements – the listen section, the user/group that FreeRADIUS runs as (must be able to
read configuration files and write log files) – the main configuration file is eap.conf. This file is
fairly well self-documented but we will now visit each stanza to guide through a configuration.

eap.conf

The file starts with an ‘eap’ statement, so the server activates the eap module. Several core
EAP selections are then made: default_eap_type (set this to your default expected incoming
type, e.g. peap), timer_expire, ignore_unknown_eap_types and
cisco_accounting_username_bug. These are all straightforward and only need to be changed
if you feel it correct for your environment. Several EAP types are then configured. If you are
not using such types, then comment them out.

Note: If you are using PEAP or TTLS then you will need to keep the EAP-TLS section active.

EAP-TLS section

This is the most important section in the 802.1X configuration. Within this section the SSL
private key, the Certificate Authority (CA) and the diffie-hellman and random generator are
defined, as are critical values such as fragment size or EAP packets, Certificate Revocation
List checking, ciphers allowed for encryption and EAP packet options such as including length.

In a vanilla installation, all of these items are auto-configured for production environments:
however, the CA-File, Private Certificate and private key will need to be corrected.

The next two sections are for EAP-TTLS and PEAP. Both of these enable the default inner
type to be defined (MSCHAPv2 is the default), the request copied to the tunnel (allows all of
the outer values to be passed through to the inner tunnel engine) and the tunnelled reply to be
used, which needs to be completed to return RADIUS attributes to the switch or access point
– such as VLAN return attributes.

There is a strong warning regarding PEAP and Windows® clients. One must ensure when
generating certificates (or getting them generated by a third party) that they contain the
required certificate extensions – as per the default configuration documentation or URLs:

http://support.microsoft.com/kb/814394/en-us [25]

http://support.microsoft.com/kb/885453/en-us [26]

Once the basic configuration has been completed, the FreeRADIUS daemon is ready to be
started in debug mode radiusd -X to confirm the system is operational. If the daemon does not
start correctly, check the output very carefully to see why it is failing. At this point, with no AAA
traffic, the output is short and concise; therefore it is easy to spot an issue such as unreadable
configuration file or non-existing certificate.

http://support.microsoft.com/kb/814394/en-us
http://support.microsoft.com/kb/885453/en-us

To complete configuring FreeRADIUS as a RADIUS server, there are several actions. This
includes editing the sql.conf file if you are to use MySQL, Oracle or PostgreSQL for
authorization, authentication or accounting. Sites-enabled/default will need to be edited to
remove any methods that you do not use, for example: CHAP, LDAP and Digest.

The users file will need to be edited to add a test account, or to set DEFAULT values (e.g. a
default VLAN return attribute). There is a good starting guide available for EAP-PEAP against
an Active Directory:
http://wiki.freeradius.org/FreeRADIUS_Active_Directory_Integration_HOWTO [27].

To use LDAP, the radiusd.conf file and sites-enabled/default will need to be edited
accordingly: for example, to use TLS for the communication, or to set the access user id.

In addition, clients.conf contains a list of all the NAS devices that can communicate with
FreeRADIUS. If the device is not listed then it cannot communicate with the FreeRADIUS
daemon on UDP ports 1812,1813 and 1814. These will also need to be opened on the
server's local firewall, if there is one running, and the naslist can also be supplied as an SQL
table.

proxy.conf is applicable to sending RADIUS packets to another RADIUS server and the
significance of this is covered further in Section 4.6.

Whilst man pages, the inline configuration documents and various other files in the
FreeRADIUS archive cover the basics, there is an online guide available at:
http://wiki.freeradius.org/Main_Page [28].

For further help and guidance, the freeradius users mailing list is hosted from:
http://www.freeradius.org/list/ [29]. As with such lists, the more information you provide, the
better the help you will receive. radius -X output is always required for ‘it does not work’ style
cases. However, ensure you have sanitised the output before sending it, for example
obfuscate IP addresses, change passwords and user names.

Example configuration segments

Whilst each site will have local authentication and authorisation requirements, there are some
key parts that are common: for example, returning a specific VLAN for a certain user. This is a
key feature of 802.1X and allows functions such as ‘user is quarantined’, ‘user is a guest on
guest network’, ‘staff on different network to students’ etc.

DEFAULT Tunnel-Medium-Type = IEEE-802,

Tunnel-Private-Group-Id = 666,

Tunnel-Type = VLAN

This segment is the bare code required to send back the message ‘move this device to
VLAN 666’. It could be contained in the users file (usually with a matching condition after
the DEFAULT):

http://wiki.freeradius.org/FreeRADIUS_Active_Directory_Integration_HOWTO
http://wiki.freeradius.org/Main_Page
http://www.freeradius.org/list/

DEFAULT NAS-IP-Address == "192.168.1.5"

Tunnel-Medium-Type = IEEE-802,

Tunnel-Private-Group-Id = 666,

Tunnel-Type = VLAN

With this statement, any device accessing the network from the NAS with address
192.168.1.6 gets put onto VLAN 666.

The configuration could be placed into return attributes in an SQL table – which can then be
triggered for certain IDs or NAS addresses, or it could be embedded in a PERL or Python
script which is triggered in the authorization or post-authorization section.

sites-enabled/default

post-auth {

perl

}

experimental.conf

022 (04/08) Page 23

perl {

 module = /path/to/yourcode.pm

func_post_auth = post_auth

max_clones = 64

start_clones = 64

min_spare_clones = 0

max_spare_clones = 64

cleanup_delay = 2

max_request_per_clone = 0

ensure that the above values match the main radius server!!!

}

/path/to/yourcode.pm

Example code!

Date: 20/11/2007

#

use strict;

very important ! The script needs the values from radiusd.

use vars qw(%RAD_REQUEST %RAD_REPLY %RAD_CHECK);

sub post_auth {

$RAD_REPLY{'Tunnel-Medium-Type'} = "IEEE-802";

$RAD_REPLY{'Tunnel-Type'} = "VLAN";

$RAD_REPLY{'Tunnel-Private-Group-Id'} = "666"; # return vlan

$RAD_REPLY{'Session-Timeout'} = "14400"; # timeout

return RLM_MODULE_UPDATED;

}

eduroam(UK) National RADIUS Proxy Servers (NRPS)

A key element of the eduroam service provided by Jisc is the National RADIUS Proxy Service.
The National RADIUS Proxy Servers (NRPS) are operated by the eduroam(UK) team, part of
the Network Access Group in the Jisc e-infrastructure directorate. The NRPSs, together with
members' Organisation RADIUS Proxy Servers (ORPSs) form a hierarchical network of
RADIUS servers which allow authentication requests to be forwarded between organisations
which are members of the eduroam(UK) federation.

Before an organisation's RADIUS server can become part of the eduroam RADIUS hierarchy,
the organisation must join the eduroam(UK) federation. A brief form must be completed and
submitted by the network management contact at the organisation seeking to join. Before
submitting this application, it is essential that the eduroam(UK) Technical Specification and
eduroam(UK) Policy are read to ensure they contain no insurmountable obstacles to
participation.

How to join is described on: https://community.jisc.ac.uk/library/janet-services-
documentation/how-does-organisation-join-service [30] Applications for membership result in a
ticket being generated in the Jisc Service Desk system and are processed by the support
team. Member organisation details are automatically entered into the eduroam(UK) support
database to enable registration and peering of ORPSs and for further diagnostic functions to
be supported.

Following application, the services of Jisc eduroam(UK) Technical Support will become
available to assist with the implementation process. On completion of the required
infrastructure eduroam(UK) Technical Support will seek confirmation of compliance with the
service requirements and then complete the peering process between the new ORPS and the

https://community.jisc.ac.uk/library/janet-services-documentation/how-does-organisation-join-service
https://community.jisc.ac.uk/library/janet-services-documentation/how-does-organisation-join-service

national infrastructure. Final confirmation tests can then be undertaken using the automated
tools on the support website.

This section describes the key changes to RADIUS configuration required to convert a simple
RADIUS AAA server into a platform for delivery of JRS Tier 2 (or Tier 3 if you have WPA2,
IPv6 and no NAT end points).

Once you have 802.1X authentication operating there are only a couple of changes to make
to enable the authentication of unknown users via their home RADIUS servers, to proxy
802.1X AAA. There are several architectural AAA decisions to make, such as: do you have a
set of front end RADIUS servers that take all AAA requests and then proxy everything – your
home users to backend AAA systems and unknown users to the NRPS? Or do you have a
single farm of RADIUS servers that perform all local authentication themselves and anything
else gets handed off to the NRPS? Usually these decisions are decided by: the security of the
main AAA servers, load balancing requirements, local network architecture and IT skills of the
site staff. However, it is recommended that only systems that should talk to the RADIUS
servers can talk to the RADIUS servers. This can be achieved by local firewalling on the
required ports. In the case of FreeRADIUS, this is UDP ports 1812 – 1814.

This section, like the main 802.1X configuration section, uses FreeRADIUS for the examples.
Both version 1 and version 2 examples are provided as the proxy code has been massively
changed between the two versions, unlike the EAP configuration. The other RADIUS servers
use the same general terms and methods used within these examples.

Clients

The first step is to define the NRPS as clients within your FreeRADIUS configuration. This
allows requests from other sites that are being proxied by the NRPS systems to be accepted
at your ORPS.

In FreeRADIUS, either add each NRPS address to clients.conf or the SQL-based naslist
table. If using naslist in SQL the required secrets for each NRPS are supplied for each ORPS
as they are registered in the Janet eduroam support server system.

Proxy

Now that the NRPS can send packets to your ORPS you should be able to run a ‘remote test’
via the Janet eduroam support site to check that remote sites can authenticate your visiting
users. The next step is to reciprocate this by allowing their users to authenticate whilst on your
network. Here is where we configure the proxy settings to enable their AAA requests to be
passed back to the remote ORPS that will check and test their credentials.

In FreeRADIUS 1.x insert the following into proxy.conf – supplying the appropriate secret and
authhost/accthost DNS entry:

realm DEFAULT {

type = radius

authhost = roamingX.ja.net:1812

accthost = roamingX.ja.net:1813

secret = secret

nostrip

}

For FreeRADIUS 2.x we define a pool for an external realm:

realm jrs {

pool = jrs

}

jrs_config {

server0 = roaming0.ja.net

server1 = roaming1.ja.net

server2 = roaming2.ja.net

secret0 = secret

022 (04/08) Page 25

secret1 = secret

secret2 = secret

}

server_pool jrs {

 home_server = jrs0

home_server = jrs1

home_server = jrs2

}

home_server jrs0 {

ipaddr = ${jrs_config.server0}

secret = ${jrs_config.secret0}

port = 1812

type = auth+acct

nostrip

}

home_server jrs1 {

ipaddr = ${jrs_config.server1}

secret = ${jrs_config.secret1}

port = 1812

type = auth+acct

nostrip

}

home_server jrs2 {

ipaddr = ${jrs_config.server2}

secret = ${jrs_config.secret2}

port = 1812

type = auth+acct

nostrip

}

In FreeRADIUS 1.x the realm engine will tag a request as being NULL, LOCAL or DEFAULT
depending on the string value of the realm. For example: username = NULL,
username@site.ac.uk [31] REALM is site.ac.uk which, if not defined in proxy.conf will be
treated as DEFAULT rather than LOCAL.

In FreeRADIUS 2.x it is best to use ‘unlang’ to configure the realm. In the sites-
enabled/default main config within the authorize stanza, straight after the preprocess/suffix
section and before the authorization methods insert the following realm creation engine.

if"%{User-Name}" =~ /\\\\?([^@\\\\]+)@?([-[:alnum:]._]*)?$/) {

if(!"%{2}" || ("%{2}" == "yourrealm.ac.uk") || ("%{2}" == "yourotherrealm.ac.uk")){

 update request {

mailto:username@site.ac.uk

 #Stripped-User-Name := "%{1}" # you may need this line if handling names
elsewhere

Realm := "local"

 }

}

else{

 update request {

 #Stripped-User-Name := "%{1}@%{2}" # you may need this line if handling
names elsewhere

Realm := "%{2}"

 }

}

}

Username in invalid format (this may just be someone doing eap-tls)

set the realm to local, else this will end up going to the default home server.

else{

update request {

 Stripped-User-Name := "anonymous"

Realm := "local"

}

}

PROXYING LOGIC

Eventually if we ever need to proxy to multiple locations we

can do checks here, but for now assume all non local realms go through JRS

switch "%{Realm}" {

case "local" {

 # Don't do any proxy stuff here, request will be handled later.

}

case "yourrealm.ac.uk" {

case {

 update control {

 Proxy-To-Realm := "jrs"

 }

 update request {

 Realm := "jrs"

 }

}

}

The ‘unlang’ feature is far more flexible for the addition of further proxy/realm rules and
handling packets in special ways.

Now, a visitor using a proper full outer id username@theirrealm.ac.uk [32] will have their AAA
802.1X proxied through the NRPS which will then proxy it through to their ORPS for handling.

Note: A visitor will not need to have your RADIUS certificate installed onto their system, as
their main EAP is passed all the way back to their ORPS, the endpoint of the conversation
being their ORPS. Likewise, your users will not need to install the certificates of the remote
site before they can use the remote EAP network; they simply need their home site RADIUS
certificates and CA signing certificate. Also note that EAP packets can be large, and can often
be fragmented so any firewall must allow UDP fragments between the ORPS and NRPS. This
is especially true for EAP-TLS authentication.

Filtering of Attributes

Once you proxy an 802.1X AAA method, the remote RADIUS server is likely to send back
more information than you desire, such as VLAN return attributes; therefore you should
always ensure that you filter the return packets. In FreeRADIUS this is achieved by using the
attr_filter option. This should not be run on pre-proxy packets; however it should be run in the
post_proxy section.

There are a minimal list of attributes that must not be filtered (otherwise EAP breaks as proxy-
state, EAP flags and MPPE flags must all be preserved in the conversation); an up to date list
is maintained on the Janet eduroam support server in the FAQ section.

mailto:username@theirrealm.ac.uk

In FreeRADIUS 1.x add attr_filter to the authorize and post-proxy stanzas in radiusd.conf. In
FreeRADIUS 2.x, add the attr_filter.post-proxy to the post-proxy section in your active servers
in sites-enabled.

attrs file in both cases should contain:

DEFAULT

Service-Type == Framed-User,

Service-Type == Login-User,

Login-Service == Telnet,

Login-Service == Rlogin,

Login-Service == TCP-Clear,

Login-TCP-Port <= 65536,

Framed-IP-Address == 255.255.255.254,

Framed-IP-Netmask == 255.255.255.255,

Framed-Protocol == PPP,

Framed-Protocol == SLIP,

Framed-Compression == Van-Jacobson-TCP-IP,

Framed-MTU >= 576,

Framed-Filter-ID =* ANY,

Reply-Message =* ANY,

Proxy-State =* ANY,

EAP-Message =* ANY,

MS-MPPE-Recv-Key =* ANY,

MS-MPPE-Send-Key =* ANY,

MS-CHAP-MPPE-Keys =* ANY,

State =* ANY,

Message-Authenticator =* ANY,

Session-Timeout <= 28800,

Idle-Timeout <= 600,

Port-Limit <= 2

It is left to individual site policy what other attributes are filtered. Sites may require other
REALM identities to be added to this file and allow such realms to be able to send specific
attributes through the proxy. For example Tunnel-Medium-Type or Tunnel-Private-Group-Id
filtering can be undertaken to ensure that the values are only what you expect: e.g.
TunnelPrivate-Group-Id == 666.

Failover and Load Balancing

Whilst the load-balancing behaviour of FreeRADIUS is improving, you cannot load balance
EAP such that parts of the conversation go through different NRPS. The conversation must
pass through a single NRPS; it is therefore recommended to configure the NRPS as fail_over.

In FreeRADIUS 1.x this is using the ldflag; in FreeRADIUS 2.x you define type = fail_over in
the pool section. See the config inline documentation in both cases.

RADIATOR has some load-balancing methods which are able to keep each EAP conversation
to a single NRPS. If a site is using RADIATOR it is worth investigating this method further.

Display as Single Column?:

Client configuration

Client configuration

Operating System Support

Currently client devices pose the largest potential problem when deploying 802.1X.

Whilst modern operating systems such as Microsoft® Windows Vista/XP®, Mac OS X®
10.4/10.5 and Linux® natively support 802.1X, older OS such as Microsoft® Windows
98/ME® do not. Additionally there are many other devices on the network which do not
support 802.1X such as printers, network music player, desktop hubs/switches, and the
current iPhone (Firmware 1.1.4.). Workarounds must be found if these devices are to continue
functioning on the network.

All devices which support 802.1X will need to be configured. As introducing 802.1X is a major
undertaking, completely changing the way in which users connect to the network, ensuring
that client devices are configured correctly is a high priority task.

Ensuring all devices are correctly configured will require planning, documentation and
configuration tools. IT Support staff may also need training in 802.1X to deal with related

problems and configuration issues.

Supplicants

A supplicant is an application on the client device which authenticates the client with the
authentication server and maintains the client side of 802.1X session. Most operating systems
have 802.1X supplicants built-in by default; however the configuration and EAP methods
supported vary widely between the supplicants. In addition to the default supplicants there are
a number of third party supplicants which can be either purchased or downloaded freely.
Manufacturers of wireless network interface cards will often include a supplicant in the
software package distributed with their hardware.

The most common supplicants for Windows XP® are:

Intel supplicant
MD5, TLS, TTLS, PEAP, FAST, LEAP

Cisco® Secure Services Client (formerly AEGIS Meeting House)
MD5, TLS, TTLS, PEAP, FAST, LEAP

Microsoft® 802.1X Authentication Client
TLS, PEAP

Juniper Odyssey Access Client (Formerly Funk)
MD5, TLS, TTLS, PEAP, FAST, LEAP, SIM

SecureW2 Client
TTLS

OpenSEA

OpenSEA (Open Secure Edge Access) is an alliance promoting and developing XSupplicant
(a.k.a. Open1X), a robust, open source 802.1X supplicant for multiple platforms. OpenSEA’s
primary aim is to promote the IEEE 802.1X standard for controlling network access. Support
for OpenSEA has been steadily growing and the alliance now consists of a number of large
vendors working in the 802.1X networking field.

JANET(UK) is a member of the OpenSEA alliance and is currently investigating the potential
of XSupplicant as a standardised supported supplicant for UK educational organisations:
http://www.openseaalliance.org [33].

Configuring XSupplicant

XSupplicant splits the configuration into three parts:

Trusted Servers: Users can add their trusted certificate authorities and server
certificates either by importing or selecting from the list of installed certificates.

Figure 14: OpenSEA Xsupplicant - Trusted Servers

http://www.openseaalliance.org/

[34]

Profiles: Users can create EAP profiles selecting EAP method, outer identity, user
credentials and trusted servers.

Figure 15: OpenSEA Xsupplicant - Profiles

[35]

Connections: Users can create network profiles for different interfaces and associate
them with an EAP profile.

Figure 16: OpenSEA Xsupplicant - Connections

http://community.ja.net/system/files/images/tg-ieee8021x-14.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-15.jpg

[36]

Supplicant Configuration Windows XP®

Windows XP® has an 802.1X supplicant built-in that will authenticate either the client or the
machine, on both wireless and wired network interfaces. To configure the supplicant the user
must go through a number of steps:

Install certificate/certificate authority to identify the authentication server
Configure the PEAP settings for the network interface which the user wants to be
authenticated for
Provide login credentials to authenticate the user with the authentication server.

Certificate Authority Installation

1. To install a certificate authority, double click on certificate icon.

Figure 17: Windows® Certificate Icon

http://community.ja.net/system/files/images/tg-ieee8021x-16.jpg

[37]

2. Click on <Install Certificate...> in the Certificate Window.

Figure 18: Windows® Certificate General Details

http://community.ja.net/system/files/images/tg-ieee8021x-17.jpg

[38]

3. Choose to ‘Place all certificates in the following store’ then click <Browse...>.

Figure 19: Windows® Certificate Import Wizard

[39]

4. Select ‘show physical stores’, then choose ‘Trusted root certificate authorities’ and
‘local computer’ before clicking <OK>.

Figure 20: Windows® Certificate Store Location

http://community.ja.net/system/files/images/tg-ieee8021x-18.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-19.jpg

[40]

Client Supplicant Configuration

After the certificate has been installed, the user can configure their client machine to user
authenticate using PEAP. To do this they must:

1. Locate the network interface in the network connections control panel and right click on
its icon.

2. Select ‘Properties’ from the menu.

3. For wired network interfaces skip to step 7; for wireless, carry on.

4. Select the ‘Wireless Networks’ tab, then choose the correct SSID from the list of
Preferred Networks.

5. Click on the <Properties> button.

6. Choose either WPA or WPA2 for the Network Authentication.

7. Click on the ‘Authentication’ tab.

Figure 21: Local Area Connection Properties

http://community.ja.net/system/files/images/tg-ieee8021x-20.jpg

[41]

8. Ensure ‘Authenticate as computer when computer information is available’ is not
selected.

9. Choose ‘Protected EAP (PEAP)’ for the EAP type, then click <Properties>.

10. Select ‘Validate server certificate’ and choose the Certificate Authority from the list.

Figure 22: Windows® Protected EAP Properties

http://community.ja.net/system/files/images/tg-ieee8021x-21.jpg

[42]

11. select ‘Secured password (EAP-MSCHAPv2) from the Authentication Method list and
click <Configure>.

12. un-tick ‘Automatically use my Windows logon name and password’ before selecting
<OK>

Supplicant Configuration Macintosh OS X® 10.5 (Leopard)

Macintosh OS X® has a built-in 802.1X supplicant that will authenticate either the client or the
machine on both wireless and wired network interfaces. The supplicant has a number of
differences introduced since 10.4. To configure the supplicant the user must go through a
number of steps:

Certificate Authority Installation

1. Click on your site’s CA certificate and you should then see a prompt from the Keychain
Access utility asking you if you want to add the certificate to your keychain, as shown below.
Click the <OK> button to do this.

Figure 23: Add Certificates Dialogue Box

http://community.ja.net/system/files/images/tg-ieee8021x-22.jpg

[43]

2. You will be prompted to set some basic trust settings; select Always Trust.

Figure 24: Certificate Trust Dialogue Box

[44]

3. Double click on the Certificate Authority item, as shown highlighted in the Keychain
Access window below.

Figure 25: Keychain Access Window

[45]

4. A new window will appear, showing detailed information about the Certificate Authority.

http://community.ja.net/system/files/images/tg-ieee8021x-23.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-24.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-25.jpg

Click on the small triangle to the left of Trust and select the value Always Trust from the
‘When using this certificate:’ drop-down menu as shown below.

Figure 26: Selecting to Always Trust a Certificate

[46]

5. Press Apple (Command) key + Q to leave Keychain Access

Configuring the Wireless Network

1. Open the System Preferences application.

Figure 27: Launching System Preferences

[47]

2. Once the System Preferences window has been displayed, click on the Network option.

Figure 28: Network System Preference Applet

http://community.ja.net/system/files/images/tg-ieee8021x-26.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-27.jpg

[48]

3. The Network window will appear. Select Airport from the sidebar, and then click on the
Advanced button.

Figure 29: Network System Preference Window

[49]

4. Once the Advanced Airport menu has been displayed, select the 802.1X tab.

Figure 30: Advanced Airport Configuration Window

http://community.ja.net/system/files/images/tg-ieee8021x-28.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-29.jpg

[50]

5. Change Domain option from Login Window to User.

Figure 31: 802.1X tab within Advanced Airport Configuration

[51]

6. Select the small plus sign + at the bottom of the Configuration window to add a 802.1X
configuration.

Figure 32: Adding 802.1X Configuration

http://community.ja.net/system/files/images/tg-ieee8021x-30.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-31.jpg

[52]

7. Under Configurations enter a name for the connection, e.g. Wlan: TTLS, and then enter
your username for User Name and your password in the Password field. Select your
SSID from the Wireless Network list, and ensure that only TTLS is ticked under
Authentication. If your AAA system can only handle PEAP then select PEAP instead of
TTLS.

Figure 33: 802.1X Configuration Credentials

[53]

8. Click Configure below the Authentication box to display the TTLS configuration window
and enter your organisational outer identity:

Figure 34: Configuring TTLS

http://community.ja.net/system/files/images/tg-ieee8021x-32.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-33.jpg

[54]

9. After being returned to the main AirPort window, select <OK>.

Figure 35: Confirming 802.1X Configuration

[55]

10. Once returned to the Network panel of System Preferences, select your SSID from
the Network Name drop-down selection box and click <Apply>.

Figure 36: Selecting SSID for 802.1X Enabled Access

http://community.ja.net/system/files/images/tg-ieee8021x-34.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-35.jpg

[56]

11. If everything has been completed correctly, the computer should now be connected to
the wireless network and one should able to browse the Internet as normal.

The next time a user wishes to connect to the wireless network they may need to click on the
AirPort symbol in the menu bar at the top of the screen, and select the appropriate SSID from
the list of available networks. This should only need to be done once, as the SSID will be
added to the computer preferred networks list in the future.

Figure 37: Airport Selection Menu

[57]

Debugging 802.1X under Mac OS X®

The Macintosh platform offers a number of options to facilitate advanced debugging of 802.1X
related issues. Configuration is enabled using the Terminal application.

Open a terminal window and type:

http://community.ja.net/system/files/images/tg-ieee8021x-36.jpg
http://community.ja.net/system/files/images/tg-ieee8021x-37.jpg

sudo mkdir /var/log/eapolclient

export NSDebugEnabled=YES

Load the Network Connection Application and attempt to connect to the 802.1X (EAP)
wireless network. This will generate a log file in /var/log/eapolclient/ which is viewable with pre-
installed text editors and will aid debugging of the system.

Authors and contributors

Authors and contributors

Scott Armitage is a member of the IT Services department at Loughborough University and
works within the Network & Security Team. Scott has been one of the key people responsible
for the deployment and management of wireless networking at Loughborough and is also
heavily involved in deploying 802.1X on the wired network. Recently he has also been
contracted to JANET(UK) as an advisor for the newly created Wireless Technology Advisory
Service (WTAS).

Dr Alan Buxey has more than 17 years of experience in computer technology, building up a
fundamental knowledge of IT from an early interest in computing as a teenager. During his
time at Sussex University he managed UNIX servers including local networking and built on
this at MSSL (UCL) where he was involved in Beowulf projects, Distributed Computing and
introductory GRID projects. Alan managed the lead organisation for the East Midlands
Metropolitan Area Network (EMMAN) consortium in then-UKERNA’s Location Independent
Networking trial project which has become the JANET Roaming service where he works in a
national technical support role. Currently entrenched in wireless, 802.1X security and
deployment at Loughborough University, he is still an active participant in several key
technical mailing lists regarding this sphere of technology.

As Network & Security Manager at Loughborough University, Matthew Cook manages the
merged Network & Security team of over ten IT professionals with a remit to provide expert
level knowledge and skills in the areas of data networking and security. The team supports
the university-wide logical network infrastructure, both wired, wireless and the core networking
application level services. As well as driving local networking strategy, he has functional
responsibility and oversight for IT Security Policy across all areas of IT Services and the wider
university. Matthew has an extensive knowledge of wide ranging operating system and
networking technologies and has spoken at many conferences on various security matters.

Source URL: https://community.jisc.ac.uk/library/advisory-services/ieee-8021x-implementation-janet-
connected-organisations

Links
[1] http://community.ja.net/library/janet-services-documentation/security-matters-technical-guide
[2] http://grouper.ieee.org/groups/802/1/
[3] http://www.ietf.org/rfc/rfc3748.txt

[4] http://standards.ieee.org/getieee802/
[5] http://www.ietf.org/rfc/rfc2284.txt
[6] http://www.ietf.org/rfc/rfc2865.txt
[7] http://www.ietf.org/rfc/rfc3588.txt
[8] http://community.ja.net/system/files/images/tg-ieee8021x-01.jpg
[9] http://community.ja.net/system/files/images/tg-ieee8021x-02.jpg
[10] http://community.ja.net/system/files/images/tg-ieee8021x-03.jpg
[11] http://community.ja.net/system/files/images/tg-ieee8021x-04.jpg
[12] http://community.ja.net/system/files/images/tg-ieee8021x-05.jpg
[13] http://community.ja.net/system/files/images/tg-ieee8021x-06.jpg
[14] http://community.ja.net/system/files/images/tg-ieee8021x-07.jpg
[15] http://community.ja.net/system/files/images/tg-ieee8021x-08.jpg
[16] http://community.ja.net/system/files/images/tg-ieee8021x-09.jpg
[17] http://community.ja.net/system/files/images/tg-ieee8021x-10.jpg
[18] http://community.ja.net/system/files/images/tg-ieee8021x-11.jpg
[19] http://community.ja.net/system/files/images/tg-ieee8021x-12.jpg
[20] http://www.tools.ietf.org/html/draft-kamath-pppext-peapv0-00
[21] http://community.ja.net/system/files/images/tg-ieee8021x-13.jpg
[22] http://tools.ietf.org/html/draft-funk-eap-ttls-v1-01
[23]
http://www.cisco.com/en/US/docs/switches/lan/catalyst2950/software/release/12.1_9_ea1/configuration/guide/Sw8021x.html
[24] http://www.freeradius.org/
[25] http://support.microsoft.com/kb/814394/en-us
[26] http://support.microsoft.com/kb/885453/en-us
[27] http://wiki.freeradius.org/FreeRADIUS_Active_Directory_Integration_HOWTO
[28] http://wiki.freeradius.org/Main_Page
[29] http://www.freeradius.org/list/
[30] https://community.jisc.ac.uk/library/janet-services-documentation/how-does-organisation-join-service
[31] mailto:username@site.ac.uk
[32] mailto:username@theirrealm.ac.uk
[33] http://www.openseaalliance.org/
[34] http://community.ja.net/system/files/images/tg-ieee8021x-14.jpg
[35] http://community.ja.net/system/files/images/tg-ieee8021x-15.jpg
[36] http://community.ja.net/system/files/images/tg-ieee8021x-16.jpg
[37] http://community.ja.net/system/files/images/tg-ieee8021x-17.jpg
[38] http://community.ja.net/system/files/images/tg-ieee8021x-18.jpg
[39] http://community.ja.net/system/files/images/tg-ieee8021x-19.jpg
[40] http://community.ja.net/system/files/images/tg-ieee8021x-20.jpg
[41] http://community.ja.net/system/files/images/tg-ieee8021x-21.jpg
[42] http://community.ja.net/system/files/images/tg-ieee8021x-22.jpg
[43] http://community.ja.net/system/files/images/tg-ieee8021x-23.jpg
[44] http://community.ja.net/system/files/images/tg-ieee8021x-24.jpg
[45] http://community.ja.net/system/files/images/tg-ieee8021x-25.jpg
[46] http://community.ja.net/system/files/images/tg-ieee8021x-26.jpg
[47] http://community.ja.net/system/files/images/tg-ieee8021x-27.jpg
[48] http://community.ja.net/system/files/images/tg-ieee8021x-28.jpg
[49] http://community.ja.net/system/files/images/tg-ieee8021x-29.jpg
[50] http://community.ja.net/system/files/images/tg-ieee8021x-30.jpg
[51] http://community.ja.net/system/files/images/tg-ieee8021x-31.jpg
[52] http://community.ja.net/system/files/images/tg-ieee8021x-32.jpg
[53] http://community.ja.net/system/files/images/tg-ieee8021x-33.jpg
[54] http://community.ja.net/system/files/images/tg-ieee8021x-34.jpg
[55] http://community.ja.net/system/files/images/tg-ieee8021x-35.jpg
[56] http://community.ja.net/system/files/images/tg-ieee8021x-36.jpg
[57] http://community.ja.net/system/files/images/tg-ieee8021x-37.jpg

