
Published on Jisc community (https://community.jisc.ac.uk)

Home > Advisory services > Multi-site Connectivity Advisory Service > Technical guides > Firewall implementation at Janet-
connected organisations > UNIX/Linux-based firewalls

UNIX/Linux-based firewalls

Why use UNIX/Linux?

Firstly, unless a network administrator is familiar with the UNIX/Linux platform, then it is not
recommended that a UNIX/Linux firewall is implemented. It will be easier to maintain a secure
system if the administrator has skills in maintaining the underlying operating system.
UNIX/Linux systems typically rely on a CLI more than a GUI, making navigating the system
more difficult for the first time user.

Modern Linux kernels (from versions 2.4 and above) include NetFilter/IPTables which filters
incoming, outgoing and forwarded traffic. Earlier Linux kernels provided IPChains (2.2) or the
ported IPFirewall code (2.0).

UNIX/Linux systems can be configured easily with a low system footprint, making a small,
clean install with the minimum configured services. Creating a system with a small footprint
makes it easier to maintain and more secure, as operating system updates are only required
for packages that are installed.

When building Linux systems there is the opportunity to build a custom kernel. The ability to
create a custom monolithic kernel has advantages and disadvantages. The standard kernel
included with distributions has a number of options enabled and others disabled and
extensions can be included as loadable modules.

Creating a custom kernel provides the ability to incorporate just the elements of the kernel that
are required for the operation of a firewall, which includes networking drivers and
enhancements like SELinux, GrSecurity, SMP and Magic SysRq.

SELinux and GRSecurity are extensions to the Linux operating system which provide local
security enhancements. These are particularly useful on multi-user interactive systems and
can also provide protection against buffer overflow attacks and similar exploits.

SMP extensions to the kernel provide support for multiprocessor systems. Magic SysRq
supplies a number of operations which can be accessed using the SysRq key in the event of a
system crash. These operations can also be achieved using a serial line connection allowing
out-of-band crash recovery, disc sync and reboot.

The main disadvantages in creating tailored kernels are the inability to use the vendorsupplied
kernel updates and the limited support provided on most contracts. It is essential to weigh up
the pros and cons of both solutions.

https://community.jisc.ac.uk
https://community.jisc.ac.uk/
https://community.jisc.ac.uk/library/advisory-services
https://community.jisc.ac.uk/library/advisory-services/multi-site-connectivity-advisory-service
https://community.jisc.ac.uk/library/advisory-services/technical-guides
https://community.jisc.ac.uk/library/advisory-services/firewall-implementation-janet-connected-organisations
https://community.jisc.ac.uk/library/advisory-services/firewall-implementation-janet-connected-organisations

Requirements

As the firewall is being built on a PC-based hardware system, it is important to consider the
hardware configuration required to run it. Linux distributions will run on most hardware vendor
platforms and therefore compatibility with major hardware should not be an issue. The
hardware required will be dependent on the following factors:

wirespeed
complexity of rules
number of interfaces
scalability
data retention
policy and support.

For a small organisation with a 10Mbit/s internet connection and a default deny firewall policy,
implementing a simple two interface routed NAT firewall storing data for 14 days can be built
on a very small footprint, often an old desktop PC.

Larger organisations with 100Mbit/s internet connections, more complex firewall rules, more
interfaces and longer data storage will require more powerful platforms.

The firewall is one of the most critical pieces of hardware in the organisation’s network
infrastructure, so ensuring a reliable platform which is supported by maintenance is
paramount. Most hardware vendors have grades of support from within working hours to 24
hours a day, seven days a week. Support can usually be purchased for three years at the time
of procurement and then extended for a further year at a time.

Hardware

When purchasing new hardware, it is important not to procure a machine that is
underspecified and will cripple the firewall. It is always worth using a server grade
motherboard for a production server, along with a rack mount chassis with dual power
supplies.

Memory is not a critical requirement: a firewall servicing 100Mbit/s wirespeed typically uses no
more than 512Mb of RAM, although as memory is relatively inexpensive, it is worth
purchasing 1Gb as a minimum.

CPU speed is also not a critical requirement: the same firewall will run with a small load
average using a twin Pentium® Xeon 2.8Ghz processor. Dual processors are not an absolute
requirement, although it helps reduce any lag on a heavily-loaded firewall.

It is recommended that good quality branded network interfaces are used, and are installed
with a view to future expansion and dedicated out-of-band management. A common
installation is Intel® PRO (S) interfaces, with the PCI-X variants in server boards.

Disc space is required for booting the firewall itself and log file storage. This can be achieved
with a RAID mirrored pair of system discs and the remaining discs used for log file storage.

Distribution

As with the operating system on which a firewall is based, the choice of distribution is just as
critical and should be dependent on the operator’s familiarity with it.

Most modern Linux distributions such as Fedora, SUSE® and Ubuntu will use an
implementation of NetFilter/IPTables. NetFilter is the firewalling code in the Linux kernel that
provides a packet filter firewall, NAT, Connection Tracking and other features through kernel
modules. Sample scripts for building the firewall are included with the distributions and further
clues are often found in the rc directory. Fedora Linux includes the lokkit tool for easy
configuration from the command line or from the GNOME desktop.

OpenBSD distributions use the pf packet filter included in the operating system kernel to
provide firewall functionality, while FreeBSD® and Mac OS X use the ipfw packet filter. The
latter system is very similar in operation to NetFilter/IPTables.

Solaris 10, NetBSD and earlier versions of FreeBSD use the ipf packet filter, which is installed
by the operating system. This can provide similar firewall services as a loadable kernel
module or be included when compiling a fresh kernel.

Firewall software

The choice of firewall code will probably be determined by the preferred operating system and
distribution. All the different firewall systems look very similar on the surface, but they are
subtly different underneath. IPChains is not supported by most modern distributions so is only
mentioned here in passing. The rest of this section will concentrate on NetFilter/ IPTables and
demonstrate how it differs from ipfw. IPTables is the name of the tool which creates the rules
to be managed by the overall NetFilter firewall code.

The ipfw code supports three filtering chains: INPUT, FORWARD and OUTPUT. All packets
are processed by the INPUT chain, then if accepted, routed to the local computer or
forwarded.

Packets forwarded are subjected to the FORWARD chain and finally all packets, including
those locally generated, are processed by the OUTPUT chain. Therefore, an ipfw firewall will
process forwarded packets against three chains.

[1]

Figure 13: How ipfw processes a packet through the firewall

http://community.ja.net/system/files/images/firewalls-tg-13.jpg

NetFilter/IPTables initially uses three chains: INPUT, FORWARD and OUTPUT. All packets
are firstly interpreted by the routing element.

If a packet is to be forwarded, it is only processed by the FORWARD chain, before being
directed straight out of the appropriate interface. If a packet is destined for the local computer
or locally generated then it is processed by the INPUT and OUTPUT chains respectively.

[2]

Figure 14: How NetFilter processes a packet through the firewall

There are many small differences between IPTables and previous firewall code. IPTables is
built of many modules. For example, the INPUT and OUTPUT interfaces are identified
separately. Translation functions are separated from packet filtering. The logging option is
now a rule target and NAT is separate from the packet filtering element.

NetFilter firewalls are constructed using the very powerful IPTables tool which controls the
creation and management of all the elements of the firewall.

There are three tables of multiple chains within NetFilter:

FILTER
NAT
MANGLE

The FILTER table is the most commonly used and by default holds the chains FORWARD,
INPUT and OUTPUT. The NAT table provides Network Address Translation functions and the
MANGLE table is used to alter packets as they are inspected by the firewall code.

The syntax and order of IPTable commands are very strict and follow a standard layout:

iptables <option> <chain> <matching criteria> <target>

The most commonly used option is –A to add a rule after the last currently active rule in a
chain.

The chain entry will be the default INPUT, OUTPUT or FORWARD in the filter table, a user-
defined chain, or one contained in the NAT or MANGLE tables.

Matching criteria is the statement which identifies the packets to be acted upon. This could
be by source, destination, port number or other supported methods.

http://community.ja.net/system/files/images/firewalls-tg-14.jpg

Finally the target is where the packet is destined, whether it is dropped, logged, allowed or
manipulated further.

Implementing a NetFilter/IPTables firewall

Initialising the firewall

The easiest way to create a firewall is from a shell script that is executed when the computer
running the firewall starts. On a Fedora or SUSE system, the convention would be to place
the script in /etc/rc.d/ named appropriately as rc.firewall or rc.netfilter.

The firewall script should be owned and executable by root only. The firewall script can then
be started from rc.local each time the computer boots.

It is possible to use variables in the shell script for the local network and for specific networks
for services. However, the use of variables is down to personal choice. An example of a
variable would be:

LOCAL=”192.168.1.0/24”

WEBSERVER=”192.168.1.80”

As with any shell script, it starts by calling the shell in which to execute the script:

#!/bin/sh

As a security measure to avoid starting the computer with no firewall rules, the network
configuration for the firewall can be included in a script, which in turn loads the firewall rules.

For a Linux bridging firewall with two interfaces, this script would configure the network before
loading the rules.

#!/bin/sh

echo Bringing interfaces up...

ifconfig eth0 up

ifconfig eth1 up

echo Sleeping...

sleep 10

echo Bringing bridging up...

brctl addbr br0

brctl addif br0 eth0

brctl addif br0 eth1

brctl stp br0 off

echo Sleeping...

sleep 10

echo Adding bridge IP address and default route

ifconfig br0 up

ifconfig br0 inet 192.168.1.2 netmask 255.255.255.0 broadcast

192.168.1.255

echo Adding firewall rules

/etc/rc.d/rc.firewall_rules

Customised rulesets

Once a basic firewall script has been created, there are a number of specific services which
may still need to be blocked. It is impossible to provide an exhaustive list, but as a starting
point some are listed below:

Net BIOS/SMB/CIFS – TCP/UDP 135-139 and TCP 445
Microsoft® RPC over HTTP – TCP/UDP 593
BootP/DHCP – TCP/UDP 67 and 68
SNMP – TCP/UDP 161and 162
NFS – TCP/UDP 2049
Microsoft® SQL – TCP 1433
MySQL – TCP 3307
Microsoft® RDP – TCP 3389
LPD – TCP 515
TFTP – UDP 69
Simple UNIX Services (TIME, CHARGEN etc)

Many web sites offer advice on what should be blocked at the firewall, but it is important to
tailor the rules to the software and services running at your organisation. When using a
particular piece of network-based backup software, it would be prudent to ensure that it is
blocked from off-campus access.

When defining the rules, it is essential to specifically allow services which are running on your
network which require Internet access. The most important thing is to make the rule as
specific as possible. For example, when creating a rule to allow SMTP access to Message

Transfer Agents on your internal network, do not allow port 25 access to the entire network,
but ensure it is only allowed to specific hosts.

For example, do not use:

iptables –A FORWARD –d 192.168.1.0/24 --dport 25 –j ACCEPT

Instead, use these rules for the primary and secondary mail routers:

iptables –A FORWARD –d 192.168.1.25 --dport 25 –j ACCEPT

iptables –A FORWARD –d 192.168.1.26 --dport 25 –j ACCEPT

iptables –A FORWARD –d 192.168.1.0/25 --dport 25 –j DENY

The third line, which explicitly denies port 25 traffic to the rest of the netblock, is very useful
when first creating firewall rules and also when debugging. Explicit deny rules like this will be
shown on screen by the iptables –L FORWARD –v command along with hit counters to show
how many times each rule has been matched.

When optimising rules for a production environment, if there is a explicit DENY for all traffic at
the end of the rule set, some DENY rules may be removed. However, rules can only be
removed if there will not be an accidental match further down the rule set.

Multicast

Multicast traffic is often overlooked when setting firewall policies. Multicast is enabled by most
RNOs and is an integral tool for many collaboration projects. Internally, multicast is used when
deploying computer images using packages like Norton Ghost™, and for locating resources
with Service Location Protocol and Rendezvous/Bonjour on Mac OS X. It is advisable to
ensure that appropriate rules are in place to protect multicast traffic, as an example of creating
a user-defined rule. Multicast traffic can be identified and then examined in further detail in the
MCAST chain.

iptables -F MCAST

iptables -X MCAST

iptables -N MCAST

iptables -A FORWARD -i br0 -d 224.0.0.0/4 -j MCAST

NTP

iptables -A MCAST -d 224.0.1.1 -j DROP

SGI IRIX objectserver/directoryserver

iptables -A MCAST -d 224.0.1.2 -j DROP

rwhod

iptables -A MCAST -d 224.0.1.3 -j DROP

Service Location Protocol

iptables -A MCAST -d 224.0.1.22 -j DROP

Microsoft Active Directory server

iptables -A MCAST -d 224.0.1.24 -j DROP

Service Location Protocol Directory Agent

iptables -A MCAST -d 224.0.1.35 -j DROP

Cisco’s PIM Auto Rendezvous Point

iptables -A MCAST -d 224.0.1.39 -j DROP

iptables -A MCAST -d 224.0.1.40 -j DROP

HP Device Discovery

iptables -A MCAST -d 224.0.1.60 -j DROP

Sun RPC

iptables -A MCAST -d 224.0.2.2 -j DROP

Altiris Ghosting / Multicast Usenet

iptables -A MCAST -d 225.1.2.3 -j DROP

Norton Ghosting

iptables -A MCAST -d 229.55.150.208 -j DROP

Source Specific Multicast (SSM) groups

iptables -A MCAST -s 233.80.58.0/24 -j ACCEPT

iptables -A MCAST -d 233.80.58.0/24 -j ACCEPT

iptables -A MCAST -d 232.0.0.0/8 -j DROP

ImageCast ghosting

iptables -A MCAST -d 234.42.42.42 -j DROP

ImageCast ghosting

iptables -A MCAST -d 234.142.142.142 -j DROP

Locally (admin) scoped groups

iptables -A MCAST -d 239.0.0.0/8 -j DROP

Logging

By default, logging from the NetFilter/IPTables firewall code will be logged as priority 4
kern.warn messages and written to /var/log/messages. The priority can be changed with the
--log-level option. The creation of the messages is controlled by the syslog process.

Syslog works on a series of facilities and the priority of alerts sent from them. The facilities are
categories of event which allow easier diagnostics and log file analysis. The priority of alerts is
set by the programmer for the software in question. The alerts are used to determine if and
where the messages should be logged. This is all configured in /etc/syslog.conf. Firewall
logging can be redirected to a new file by adding a line to /etc/syslog.conf, but it is important
to make sure an empty file exists and other log management software like log rotate is
updated.

kern.warn/var/log/firewall

Note: In some older UNIX/Linux distributions the white space in the /etc/syslog.conf file
requires tab characters instead of simple spaces.

Source URL: https://community.jisc.ac.uk/library/advisory-services/unixlinux-based-firewalls

Links
[1] http://community.ja.net/system/files/images/firewalls-tg-13.jpg
[2] http://community.ja.net/system/files/images/firewalls-tg-14.jpg

