
Published on Jisc community (https://community.jisc.ac.uk)

Home > Advisory services > Wireless Technology Advisory Service > Guides > IEEE 802.1X implementation at Janet-
connected organisations > Server configuration

Server configuration

Updated: 4/06/2021

The key component in 802.1X is the RADIUS server which is capable of AAA. There are
several widely-deployed commercial RADIUS servers available: Microsoft® IAS, Cisco® ACS,
Funk Steel-Belted Radius. There are also two widely deployed Open Source RADIUS servers
available, FreeRADIUS and RADIATOR. FreeRADIUS is non-commercial GPL software,
RADIATOR is commercial.

All servers have their strengths and weaknesses: Microsoft® IAS limits the type of
authentications (EAP-PEAP and EAP-TLS) and FreeRADIUS has third party commercial
support. However, all of them perform the core functionality required for central 802.1X
RADIUS authentication. As FreeRADIUS supports many types of authentication and
authorisation and is free, this Technical Guide documents the use of FreeRADIUS.

FreeRADIUS

FreeRADIUS is a popular Open Source RADIUS server which can operate in enterprise
environments handling tens of thousands of authentications a day.

This Technical Guide refers to FreeRADIUS version 2.0 for several reasons: firstly, when
installing FreeRADIUS 2.0, the EAP section is automatically populated with a working
certificate system ideal for testing (you should replace the certificates with appropriate
versions before going into service); the EAP engine is vastly improved over version 1.1.x (an
EAP authentication now only needs to pass through the LDAP or SQL section once, thus
vastly reducing load on such servers); and finally the server is now equipped with ‘unlang’ – a
pseudo code which enables very flexible checking parameters and testing loops in the main
configuration files.

Installing FreeRADIUS

Prerequisites: a Linux® server running a recent distribution (with kernel 2.6 or above), at least
OpenSSL 0.9.8b, development tools (GCC compiler) and a network interface able to
communicate with the NAS (e.g. switch, wireless access point or WiFi central controller). A
system with at least two NICs is recommended – one on a managed network and one on the
management network, with at least 100Mbit/s ports configured for full-duplex operation to
reduce latency.

Download FreeRADIUS from: http://www.freeradius.org/ [1]

There may be a version available for your distribution; however, check that it is a recent
version.

https://community.jisc.ac.uk
https://community.jisc.ac.uk/
https://community.jisc.ac.uk/library/advisory-services
https://community.jisc.ac.uk/library/advisory-services/wireless-technology-advisory-service
https://community.jisc.ac.uk/library/advisory-services/guides
https://community.jisc.ac.uk/library/advisory-services/ieee-8021x-implementation-janet-connected-organisations
https://community.jisc.ac.uk/library/advisory-services/ieee-8021x-implementation-janet-connected-organisations
http://www.freeradius.org/

The current version of FreeRADIUS is 3.0.22 - the information below relating to version
1.1 is historical.

Whilst 1.1.x does not have the same flexibility if you are going to create or import your own
certificates, if you are familiar with the system then this guide is largely suitable for version
1.1.x too. 1.1.x specific issues may be highlighted.

After downloading, extract the .tar.gz archive and run the configure, make and make install
steps as per the INSTALL document within the archive. More advanced users might want to
run ./configure --help to check what special options might be appropriate. Please ensure that
you read the output of the ./configure stage. Check for any lines with ‘WARNING’ – you may
need to install several development/support packages to get FreeRADIUS to work with your
required environment.

After compilation and installing (you will have noted the generation of SSL certificates if this is
a first-time 2.0 install) FreeRADIUS is ready for configuring.

Whilst most of the configuration files will be very much site specific (sql.conf, proxy.conf,
LDAP/SQL authentication) a core set of configuration files are common to all systems for
802.1X authentication. After an initial editing of radiusd.conf to handle site-specific
requirements – the listen section, the user/group that FreeRADIUS runs as (must be able to
read configuration files and write log files) – the main configuration file is eap.conf. This file is
fairly well self-documented but we will now visit each stanza to guide through a configuration.

eap.conf

The file starts with an ‘eap’ statement, so the server activates the eap module. Several core
EAP selections are then made: default_eap_type (set this to your default expected incoming
type, e.g. peap), timer_expire, ignore_unknown_eap_types and
cisco_accounting_username_bug. These are all straightforward and only need to be changed
if you feel it correct for your environment. Several EAP types are then configured. If you are
not using such types, then comment them out.

Note: If you are using PEAP or TTLS then you will need to keep the EAP-TLS section active.

EAP-TLS section

This is the most important section in the 802.1X configuration. Within this section the SSL
private key, the Certificate Authority (CA) and the diffie-hellman and random generator are
defined, as are critical values such as fragment size or EAP packets, Certificate Revocation
List checking, ciphers allowed for encryption and EAP packet options such as including length.

In a vanilla installation, all of these items are auto-configured for production environments:
however, the CA-File, Private Certificate and private key will need to be corrected.

The next two sections are for EAP-TTLS and PEAP. Both of these enable the default inner
type to be defined (MSCHAPv2 is the default), the request copied to the tunnel (allows all of
the outer values to be passed through to the inner tunnel engine) and the tunnelled reply to be
used, which needs to be completed to return RADIUS attributes to the switch or access point
– such as VLAN return attributes.

There is a strong warning regarding PEAP and Windows® clients. One must ensure when
generating certificates (or getting them generated by a third party) that they contain the
required certificate extensions – as per the default configuration documentation or URLs:

http://support.microsoft.com/kb/814394/en-us [2]

http://support.microsoft.com/kb/885453/en-us [3]

Once the basic configuration has been completed, the FreeRADIUS daemon is ready to be
started in debug mode radiusd -X to confirm the system is operational. If the daemon does not
start correctly, check the output very carefully to see why it is failing. At this point, with no AAA
traffic, the output is short and concise; therefore it is easy to spot an issue such as unreadable
configuration file or non-existing certificate.

To complete configuring FreeRADIUS as a RADIUS server, there are several actions. This
includes editing the sql.conf file if you are to use MySQL, Oracle or PostgreSQL for
authorization, authentication or accounting. Sites-enabled/default will need to be edited to
remove any methods that you do not use, for example: CHAP, LDAP and Digest.

The users file will need to be edited to add a test account, or to set DEFAULT values (e.g. a
default VLAN return attribute). There is a good starting guide available for EAP-PEAP against
an Active Directory:
http://wiki.freeradius.org/FreeRADIUS_Active_Directory_Integration_HOWTO [4].

To use LDAP, the radiusd.conf file and sites-enabled/default will need to be edited
accordingly: for example, to use TLS for the communication, or to set the access user id.

In addition, clients.conf contains a list of all the NAS devices that can communicate with
FreeRADIUS. If the device is not listed then it cannot communicate with the FreeRADIUS
daemon on UDP ports 1812,1813 and 1814. These will also need to be opened on the
server's local firewall, if there is one running, and the naslist can also be supplied as an SQL
table.

proxy.conf is applicable to sending RADIUS packets to another RADIUS server and the
significance of this is covered further in Section 4.6.

Whilst man pages, the inline configuration documents and various other files in the
FreeRADIUS archive cover the basics, there is an online guide available at:
http://wiki.freeradius.org/Main_Page [5].

http://support.microsoft.com/kb/814394/en-us
http://support.microsoft.com/kb/885453/en-us
http://wiki.freeradius.org/FreeRADIUS_Active_Directory_Integration_HOWTO
http://wiki.freeradius.org/Main_Page

For further help and guidance, the freeradius users mailing list is hosted from:
http://www.freeradius.org/list/ [6]. As with such lists, the more information you provide, the
better the help you will receive. radius -X output is always required for ‘it does not work’ style
cases. However, ensure you have sanitised the output before sending it, for example
obfuscate IP addresses, change passwords and user names.

Example configuration segments

Whilst each site will have local authentication and authorisation requirements, there are some
key parts that are common: for example, returning a specific VLAN for a certain user. This is a
key feature of 802.1X and allows functions such as ‘user is quarantined’, ‘user is a guest on
guest network’, ‘staff on different network to students’ etc.

DEFAULT Tunnel-Medium-Type = IEEE-802,

Tunnel-Private-Group-Id = 666,

Tunnel-Type = VLAN

This segment is the bare code required to send back the message ‘move this device to
VLAN 666’. It could be contained in the users file (usually with a matching condition after
the DEFAULT):

DEFAULT NAS-IP-Address == "192.168.1.5"

Tunnel-Medium-Type = IEEE-802,

Tunnel-Private-Group-Id = 666,

Tunnel-Type = VLAN

With this statement, any device accessing the network from the NAS with address
192.168.1.6 gets put onto VLAN 666.

The configuration could be placed into return attributes in an SQL table – which can then be
triggered for certain IDs or NAS addresses, or it could be embedded in a PERL or Python
script which is triggered in the authorization or post-authorization section.

sites-enabled/default

post-auth {

perl

}

experimental.conf

022 (04/08) Page 23

http://www.freeradius.org/list/

perl {

 module = /path/to/yourcode.pm

func_post_auth = post_auth

max_clones = 64

start_clones = 64

min_spare_clones = 0

max_spare_clones = 64

cleanup_delay = 2

max_request_per_clone = 0

ensure that the above values match the main radius server!!!

}

/path/to/yourcode.pm

Example code!

Date: 20/11/2007

#

use strict;

very important ! The script needs the values from radiusd.

use vars qw(%RAD_REQUEST %RAD_REPLY %RAD_CHECK);

sub post_auth {

$RAD_REPLY{'Tunnel-Medium-Type'} = "IEEE-802";

$RAD_REPLY{'Tunnel-Type'} = "VLAN";

$RAD_REPLY{'Tunnel-Private-Group-Id'} = "666"; # return vlan

$RAD_REPLY{'Session-Timeout'} = "14400"; # timeout

return RLM_MODULE_UPDATED;

}

eduroam(UK) National RADIUS Proxy Servers (NRPS)

A key element of the eduroam service provided by Jisc is the National RADIUS Proxy Service.

The National RADIUS Proxy Servers (NRPS) are operated by the eduroam(UK) team, part of
the Network Access Group in the Jisc e-infrastructure directorate. The NRPSs, together with
members' Organisation RADIUS Proxy Servers (ORPSs) form a hierarchical network of
RADIUS servers which allow authentication requests to be forwarded between organisations
which are members of the eduroam(UK) federation.

Before an organisation's RADIUS server can become part of the eduroam RADIUS hierarchy,
the organisation must join the eduroam(UK) federation. A brief form must be completed and
submitted by the network management contact at the organisation seeking to join. Before
submitting this application, it is essential that the eduroam(UK) Technical Specification and
eduroam(UK) Policy are read to ensure they contain no insurmountable obstacles to
participation.

How to join is described on: https://community.jisc.ac.uk/library/janet-services-
documentation/how-does-organisation-join-service [7] Applications for membership result in a
ticket being generated in the Jisc Service Desk system and are processed by the support
team. Member organisation details are automatically entered into the eduroam(UK) support
database to enable registration and peering of ORPSs and for further diagnostic functions to
be supported.

Following application, the services of Jisc eduroam(UK) Technical Support will become
available to assist with the implementation process. On completion of the required
infrastructure eduroam(UK) Technical Support will seek confirmation of compliance with the
service requirements and then complete the peering process between the new ORPS and the
national infrastructure. Final confirmation tests can then be undertaken using the automated
tools on the support website.

This section describes the key changes to RADIUS configuration required to convert a simple
RADIUS AAA server into a platform for delivery of JRS Tier 2 (or Tier 3 if you have WPA2,
IPv6 and no NAT end points).

Once you have 802.1X authentication operating there are only a couple of changes to make
to enable the authentication of unknown users via their home RADIUS servers, to proxy
802.1X AAA. There are several architectural AAA decisions to make, such as: do you have a
set of front end RADIUS servers that take all AAA requests and then proxy everything – your
home users to backend AAA systems and unknown users to the NRPS? Or do you have a
single farm of RADIUS servers that perform all local authentication themselves and anything
else gets handed off to the NRPS? Usually these decisions are decided by: the security of the
main AAA servers, load balancing requirements, local network architecture and IT skills of the
site staff. However, it is recommended that only systems that should talk to the RADIUS
servers can talk to the RADIUS servers. This can be achieved by local firewalling on the
required ports. In the case of FreeRADIUS, this is UDP ports 1812 – 1814.

This section, like the main 802.1X configuration section, uses FreeRADIUS for the examples.
Both version 1 and version 2 examples are provided as the proxy code has been massively
changed between the two versions, unlike the EAP configuration. The other RADIUS servers
use the same general terms and methods used within these examples.

Clients

https://community.jisc.ac.uk/library/janet-services-documentation/how-does-organisation-join-service
https://community.jisc.ac.uk/library/janet-services-documentation/how-does-organisation-join-service

The first step is to define the NRPS as clients within your FreeRADIUS configuration. This
allows requests from other sites that are being proxied by the NRPS systems to be accepted
at your ORPS.

In FreeRADIUS, either add each NRPS address to clients.conf or the SQL-based naslist
table. If using naslist in SQL the required secrets for each NRPS are supplied for each ORPS
as they are registered in the Janet eduroam support server system.

Proxy

Now that the NRPS can send packets to your ORPS you should be able to run a ‘remote test’
via the Janet eduroam support site to check that remote sites can authenticate your visiting
users. The next step is to reciprocate this by allowing their users to authenticate whilst on your
network. Here is where we configure the proxy settings to enable their AAA requests to be
passed back to the remote ORPS that will check and test their credentials.

In FreeRADIUS 1.x insert the following into proxy.conf – supplying the appropriate secret and
authhost/accthost DNS entry:

realm DEFAULT {

type = radius

authhost = roamingX.ja.net:1812

accthost = roamingX.ja.net:1813

secret = secret

nostrip

}

For FreeRADIUS 2.x we define a pool for an external realm:

realm jrs {

pool = jrs

}

jrs_config {

server0 = roaming0.ja.net

server1 = roaming1.ja.net

server2 = roaming2.ja.net

secret0 = secret

022 (04/08) Page 25

secret1 = secret

secret2 = secret

}

server_pool jrs {

 home_server = jrs0

home_server = jrs1

home_server = jrs2

}

home_server jrs0 {

ipaddr = ${jrs_config.server0}

secret = ${jrs_config.secret0}

port = 1812

type = auth+acct

nostrip

}

home_server jrs1 {

ipaddr = ${jrs_config.server1}

secret = ${jrs_config.secret1}

port = 1812

type = auth+acct

nostrip

}

home_server jrs2 {

ipaddr = ${jrs_config.server2}

secret = ${jrs_config.secret2}

port = 1812

type = auth+acct

nostrip

}

In FreeRADIUS 1.x the realm engine will tag a request as being NULL, LOCAL or DEFAULT
depending on the string value of the realm. For example: username = NULL,
username@site.ac.uk [8] REALM is site.ac.uk which, if not defined in proxy.conf will be treated
as DEFAULT rather than LOCAL.

In FreeRADIUS 2.x it is best to use ‘unlang’ to configure the realm. In the sites-
enabled/default main config within the authorize stanza, straight after the preprocess/suffix
section and before the authorization methods insert the following realm creation engine.

if"%{User-Name}" =~ /\\\\?([^@\\\\]+)@?([-[:alnum:]._]*)?$/) {

if(!"%{2}" || ("%{2}" == "yourrealm.ac.uk") || ("%{2}" == "yourotherrealm.ac.uk")){

 update request {

 #Stripped-User-Name := "%{1}" # you may need this line if handling names
elsewhere

Realm := "local"

 }

}

else{

 update request {

 #Stripped-User-Name := "%{1}@%{2}" # you may need this line if handling
names elsewhere

Realm := "%{2}"

 }

}

}

Username in invalid format (this may just be someone doing eap-tls)

set the realm to local, else this will end up going to the default home server.

mailto:username@site.ac.uk

else{

update request {

 Stripped-User-Name := "anonymous"

Realm := "local"

}

}

PROXYING LOGIC

Eventually if we ever need to proxy to multiple locations we

can do checks here, but for now assume all non local realms go through JRS

switch "%{Realm}" {

case "local" {

 # Don't do any proxy stuff here, request will be handled later.

}

case "yourrealm.ac.uk" {

case {

 update control {

 Proxy-To-Realm := "jrs"

 }

 update request {

 Realm := "jrs"

 }

}

}

The ‘unlang’ feature is far more flexible for the addition of further proxy/realm rules and
handling packets in special ways.

Now, a visitor using a proper full outer id username@theirrealm.ac.uk [9] will have their AAA
802.1X proxied through the NRPS which will then proxy it through to their ORPS for handling.

mailto:username@theirrealm.ac.uk

Note: A visitor will not need to have your RADIUS certificate installed onto their system, as
their main EAP is passed all the way back to their ORPS, the endpoint of the conversation
being their ORPS. Likewise, your users will not need to install the certificates of the remote
site before they can use the remote EAP network; they simply need their home site RADIUS
certificates and CA signing certificate. Also note that EAP packets can be large, and can often
be fragmented so any firewall must allow UDP fragments between the ORPS and NRPS. This
is especially true for EAP-TLS authentication.

Filtering of Attributes

Once you proxy an 802.1X AAA method, the remote RADIUS server is likely to send back
more information than you desire, such as VLAN return attributes; therefore you should
always ensure that you filter the return packets. In FreeRADIUS this is achieved by using the
attr_filter option. This should not be run on pre-proxy packets; however it should be run in the
post_proxy section.

There are a minimal list of attributes that must not be filtered (otherwise EAP breaks as proxy-
state, EAP flags and MPPE flags must all be preserved in the conversation); an up to date list
is maintained on the Janet eduroam support server in the FAQ section.

In FreeRADIUS 1.x add attr_filter to the authorize and post-proxy stanzas in radiusd.conf. In
FreeRADIUS 2.x, add the attr_filter.post-proxy to the post-proxy section in your active servers
in sites-enabled.

attrs file in both cases should contain:

DEFAULT

Service-Type == Framed-User,

Service-Type == Login-User,

Login-Service == Telnet,

Login-Service == Rlogin,

Login-Service == TCP-Clear,

Login-TCP-Port <= 65536,

Framed-IP-Address == 255.255.255.254,

Framed-IP-Netmask == 255.255.255.255,

Framed-Protocol == PPP,

Framed-Protocol == SLIP,

Framed-Compression == Van-Jacobson-TCP-IP,

Framed-MTU >= 576,

Framed-Filter-ID =* ANY,

Reply-Message =* ANY,

Proxy-State =* ANY,

EAP-Message =* ANY,

MS-MPPE-Recv-Key =* ANY,

MS-MPPE-Send-Key =* ANY,

MS-CHAP-MPPE-Keys =* ANY,

State =* ANY,

Message-Authenticator =* ANY,

Session-Timeout <= 28800,

Idle-Timeout <= 600,

Port-Limit <= 2

It is left to individual site policy what other attributes are filtered. Sites may require other
REALM identities to be added to this file and allow such realms to be able to send specific
attributes through the proxy. For example Tunnel-Medium-Type or Tunnel-Private-Group-Id
filtering can be undertaken to ensure that the values are only what you expect: e.g.
TunnelPrivate-Group-Id == 666.

Failover and Load Balancing

Whilst the load-balancing behaviour of FreeRADIUS is improving, you cannot load balance
EAP such that parts of the conversation go through different NRPS. The conversation must
pass through a single NRPS; it is therefore recommended to configure the NRPS as fail_over.

In FreeRADIUS 1.x this is using the ldflag; in FreeRADIUS 2.x you define type = fail_over in
the pool section. See the config inline documentation in both cases.

RADIATOR has some load-balancing methods which are able to keep each EAP conversation
to a single NRPS. If a site is using RADIATOR it is worth investigating this method further.

Source URL: https://community.jisc.ac.uk/library/advisory-services/server-configuration

Links
[1] http://www.freeradius.org/
[2] http://support.microsoft.com/kb/814394/en-us
[3] http://support.microsoft.com/kb/885453/en-us
[4] http://wiki.freeradius.org/FreeRADIUS_Active_Directory_Integration_HOWTO
[5] http://wiki.freeradius.org/Main_Page

[6] http://www.freeradius.org/list/
[7] https://community.jisc.ac.uk/library/janet-services-documentation/how-does-organisation-join-service
[8] mailto:username@site.ac.uk
[9] mailto:username@theirrealm.ac.uk

